This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the con...In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.展开更多
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
文摘In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.