In this paper,for an inhomogeneous material in which the thermal conductivity varies as a function of depth,an efficient treatment is proposed to inversely calculate the depth distri- bution of optical- absorption c...In this paper,for an inhomogeneous material in which the thermal conductivity varies as a function of depth,an efficient treatment is proposed to inversely calculate the depth distri- bution of optical- absorption coefficientby the surface temperature of the material.It is demon- strated that the results of inverse computation by that method are more similar to the experi- mental ones measured by some destructive method.Thus,the treatmentis more feasible to non- destructively estimate the distribution.展开更多
On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in...On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in the western tropical Pacifc Ocean and sea level data provided by Prof. Wyrtki, analyses are made of the physical process and mechanism for the exceptionally inverse phenomenon (westward) of the Equatorial Undercurrent (EUC) in the western tropical Pacific after entering the mature stage of 1986/1987 ENSO event, and the numerical simulation is also conducted by 'cross section' model. The results indicate that the inversion of the EUC is related to that of pressure gradient force near the equator under the influence of non-local permanent westerlies.展开更多
Satellite carbon dioxide(CO_(2))retrievals provide important constraints on surface carbon fluxes in regions that are undersampled by global in situ networks.In this study,we developed an atmospheric inversion system ...Satellite carbon dioxide(CO_(2))retrievals provide important constraints on surface carbon fluxes in regions that are undersampled by global in situ networks.In this study,we developed an atmospheric inversion system to infer CO_(2)sources and sinks from Orbiting Carbon Observatory-2(OCO-2)column CO_(2)retrievals during 2015–2019,and compared our estimates to five other state-of-the-art inversions.By assimilating satellite CO_(2)retrievals in the inversion,the global net terrestrial carbon sink(net biome productivity,NBP)was found to be 1.03±0.39 petagrams of carbon per year(Pg C yr^(-1));this estimate is lower than the sink estimate of 1.46–2.52 Pg C yr^(-1),obtained using surface-based inversions.We estimated a weak northern uptake of 1.30 Pg C yr-1and weak tropical release of-0.26 Pg C yr^(-1),consistent with previous reports.By contrast,the other inversions showed a strong northern uptake(1.44–2.78 Pg C yr-1),but diverging tropical carbon fluxes,from a sink of 0.77 Pg C yr^(-1) to a source of-1.26 Pg C yr^(-1).During the 2015–2016 El Ni?o event,the tropical land biosphere was mainly responsible for a higher global CO_(2)growth rate.Anomalously high carbon uptake in the northern extratropics,consistent with concurrent extreme Northern Hemisphere greening,partially offset the tropical carbon losses.This anomalously high carbon uptake was not always found in surface-based inversions,resulting in a larger global carbon release in the other inversions.Thus,our satellite constraint refines the current understanding of flux partitioning between northern and tropical terrestrial regions,and suggests that the northern extratropics acted as anomalous high CO_(2)sinks in response to the 2015–2016 El Nino event.展开更多
This present work falls within the context of efforts that have been made over the past many years, aimed in improving the seismic vulnerability modelling of structures when using historical data. The historical data ...This present work falls within the context of efforts that have been made over the past many years, aimed in improving the seismic vulnerability modelling of structures when using historical data. The historical data describe the intensity and the damages, but do not give information about the vulnerability, since only in the ’90 the concept of vulnerability classes was introduced through the EMS92 and EMS98 scales. Considering EMS98 definitions, RISK-UE project derived a method for physical damage estimation. It introduced an analytical equation as a function of an only one parameter (Vulnerability Index), which correlates the seismic input, in term of Macroseismic Intensity, with the physical damage. In this study, we propose a methodology that uses optimization algorithms allowing a combination of theoretical-based with expert opinion-based assessment data. The objective of this combination is to estimate the optimal Vulnerability Index that fits the historical data, and hence, to give the minimum error in a seismic risk scenario. We apply the proposed methodology to the El Asnam earthquake (1980), but this approach remains general and can be extrapolated to any other region, and more, it can be applied to predictive studies (before each earthquake scenarios). The mathematical formulation gives choice for regarding, to the optic of minimizing the error, either for the: 1) very little damaged building (D0-D2 degree) or 2) highly damaged building (D4-D5 degree). These two different kinds of optics are adapted for the people who make organizational decisions as for mitigation measures and urban planning in the first case and civil protection and urgent action after a seismic event in the second case. The insight is used in the framework of seismic scenarios and offers advancing of damage estimation for the area in which no recent data, or either no data regarding vulnerability, are available.展开更多
In the El Ni?o year, the positive anomaly of SST begins in March-ApriI and continues about one year or more; the maximum positive anomaly occurs in November-December and may reach to 1°C. If a negative anomaly of...In the El Ni?o year, the positive anomaly of SST begins in March-ApriI and continues about one year or more; the maximum positive anomaly occurs in November-December and may reach to 1°C. If a negative anomaly of SST in the equatorial castern Pacific area takes place the year is called an inverse El Ni?o year.展开更多
基金Supported by the Doctoral Fund of the Education Ministry of China(1 9990 3 3 5 1 6 ) and the NationalNatural Science Foundation of China(1 0 0 71 0 73 )
文摘In this paper,for an inhomogeneous material in which the thermal conductivity varies as a function of depth,an efficient treatment is proposed to inversely calculate the depth distri- bution of optical- absorption coefficientby the surface temperature of the material.It is demon- strated that the results of inverse computation by that method are more similar to the experi- mental ones measured by some destructive method.Thus,the treatmentis more feasible to non- destructively estimate the distribution.
文摘On the basis of time series measurements of winds, currents, temperature and salinity from equatorial current meter mooring and acoustic Doppler current profiler during the PRC/USA joint air-sea interaction studies in the western tropical Pacifc Ocean and sea level data provided by Prof. Wyrtki, analyses are made of the physical process and mechanism for the exceptionally inverse phenomenon (westward) of the Equatorial Undercurrent (EUC) in the western tropical Pacific after entering the mature stage of 1986/1987 ENSO event, and the numerical simulation is also conducted by 'cross section' model. The results indicate that the inversion of the EUC is related to that of pressure gradient force near the equator under the influence of non-local permanent westerlies.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2022QZKK0101)the National Natural Science Foundation of China(Grant Nos.41975140&42105150)。
文摘Satellite carbon dioxide(CO_(2))retrievals provide important constraints on surface carbon fluxes in regions that are undersampled by global in situ networks.In this study,we developed an atmospheric inversion system to infer CO_(2)sources and sinks from Orbiting Carbon Observatory-2(OCO-2)column CO_(2)retrievals during 2015–2019,and compared our estimates to five other state-of-the-art inversions.By assimilating satellite CO_(2)retrievals in the inversion,the global net terrestrial carbon sink(net biome productivity,NBP)was found to be 1.03±0.39 petagrams of carbon per year(Pg C yr^(-1));this estimate is lower than the sink estimate of 1.46–2.52 Pg C yr^(-1),obtained using surface-based inversions.We estimated a weak northern uptake of 1.30 Pg C yr-1and weak tropical release of-0.26 Pg C yr^(-1),consistent with previous reports.By contrast,the other inversions showed a strong northern uptake(1.44–2.78 Pg C yr-1),but diverging tropical carbon fluxes,from a sink of 0.77 Pg C yr^(-1) to a source of-1.26 Pg C yr^(-1).During the 2015–2016 El Ni?o event,the tropical land biosphere was mainly responsible for a higher global CO_(2)growth rate.Anomalously high carbon uptake in the northern extratropics,consistent with concurrent extreme Northern Hemisphere greening,partially offset the tropical carbon losses.This anomalously high carbon uptake was not always found in surface-based inversions,resulting in a larger global carbon release in the other inversions.Thus,our satellite constraint refines the current understanding of flux partitioning between northern and tropical terrestrial regions,and suggests that the northern extratropics acted as anomalous high CO_(2)sinks in response to the 2015–2016 El Nino event.
文摘This present work falls within the context of efforts that have been made over the past many years, aimed in improving the seismic vulnerability modelling of structures when using historical data. The historical data describe the intensity and the damages, but do not give information about the vulnerability, since only in the ’90 the concept of vulnerability classes was introduced through the EMS92 and EMS98 scales. Considering EMS98 definitions, RISK-UE project derived a method for physical damage estimation. It introduced an analytical equation as a function of an only one parameter (Vulnerability Index), which correlates the seismic input, in term of Macroseismic Intensity, with the physical damage. In this study, we propose a methodology that uses optimization algorithms allowing a combination of theoretical-based with expert opinion-based assessment data. The objective of this combination is to estimate the optimal Vulnerability Index that fits the historical data, and hence, to give the minimum error in a seismic risk scenario. We apply the proposed methodology to the El Asnam earthquake (1980), but this approach remains general and can be extrapolated to any other region, and more, it can be applied to predictive studies (before each earthquake scenarios). The mathematical formulation gives choice for regarding, to the optic of minimizing the error, either for the: 1) very little damaged building (D0-D2 degree) or 2) highly damaged building (D4-D5 degree). These two different kinds of optics are adapted for the people who make organizational decisions as for mitigation measures and urban planning in the first case and civil protection and urgent action after a seismic event in the second case. The insight is used in the framework of seismic scenarios and offers advancing of damage estimation for the area in which no recent data, or either no data regarding vulnerability, are available.
文摘In the El Ni?o year, the positive anomaly of SST begins in March-ApriI and continues about one year or more; the maximum positive anomaly occurs in November-December and may reach to 1°C. If a negative anomaly of SST in the equatorial castern Pacific area takes place the year is called an inverse El Ni?o year.