Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] ...Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] denotes by A<sup>#</sup> the group inverse of A∈K<sup>n×n</sup> which is the solu-tion of the euqations:AXA=A, XAX=X, AX=AX.展开更多
Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polyme...Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fastpH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogelson controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO_2 in the region containing acid groups, which allowedduplicating inorganic colloidal crytals from colloidal crystal hydrogels (or macroporous products from macroporoushydrogels) via one step duplication.展开更多
This paper proposes a method of estimating computational complexity of problem through analyzing its input condition for N-vehicle exploration problem. The N-vehicle problem is firstly formulated to determine the opti...This paper proposes a method of estimating computational complexity of problem through analyzing its input condition for N-vehicle exploration problem. The N-vehicle problem is firstly formulated to determine the optimal replacement in the set of permutations of 1 to N. The complexity of the problem is factorial of N (input scale of problem). To balance accuracy and efficiency of general algorithms, this paper mentions a new systematic algorithm design and discusses correspondence between complexity of problem and its input condition, other than just putting forward a uniform approximation algorithm as usual. This is a new technique for analyzing computation of NP problems. The method of corresponding is then presented. We finally carry out a simulation to verify the advantages of the method: 1) to decrease computation in enumeration; 2) to efficiently obtain computational complexity for any N-vehicle case; 3) to guide an algorithm design for any N-vehicle case according to its complexity estimated by the method.展开更多
基金This work is Supported by NSF of Heilongjiang Provice
文摘Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] denotes by A<sup>#</sup> the group inverse of A∈K<sup>n×n</sup> which is the solu-tion of the euqations:AXA=A, XAX=X, AX=AX.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 20023003 & 20128004), and Creative Funding sponsored by Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences.
文摘Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fastpH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogelson controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO_2 in the region containing acid groups, which allowedduplicating inorganic colloidal crytals from colloidal crystal hydrogels (or macroporous products from macroporoushydrogels) via one step duplication.
基金supported by the State 973 Program(2006CB701306) and Key Laboratory of Management,Decision and Information Systems,CAS
文摘This paper proposes a method of estimating computational complexity of problem through analyzing its input condition for N-vehicle exploration problem. The N-vehicle problem is firstly formulated to determine the optimal replacement in the set of permutations of 1 to N. The complexity of the problem is factorial of N (input scale of problem). To balance accuracy and efficiency of general algorithms, this paper mentions a new systematic algorithm design and discusses correspondence between complexity of problem and its input condition, other than just putting forward a uniform approximation algorithm as usual. This is a new technique for analyzing computation of NP problems. The method of corresponding is then presented. We finally carry out a simulation to verify the advantages of the method: 1) to decrease computation in enumeration; 2) to efficiently obtain computational complexity for any N-vehicle case; 3) to guide an algorithm design for any N-vehicle case according to its complexity estimated by the method.