期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multiplicity of solutions to geophysical inversion reflected by rupture slip distribution of the 2015 Nepal earthquake 被引量:2
1
作者 Kai Tan Caihong Zhang +5 位作者 Bin Zhao Qi Wang Ruilin Du Rui Zhang Xuejun Qiao Yong Huang 《Geodesy and Geodynamics》 2017年第1期59-69,共11页
The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori... The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori rupture model determined and the slip distribution smoothing factor selected will have significant influences on the earthquake rupture slip distribution. Using different data and methods, different authors have given different rupture slip distribution models of the 2015 Mw7.9 Nepal earth- quake, with the maximum slip ranging from 3.0 m to 6.8 m. In this paper, geometry parameters of the single rectangular fault model in elastic half-space were inferred constraining with the Global Posi- tioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) coseismic deformations and bounding the slip with approximate average value; and then, the single rectangular fault was divided into multiple sub-faults, and the final slip smoothing factor, the final slip distribution and the maximum slip were determined with the misfit-roughness tradeoff curve, the cross-validation sum of squares (CVSS) and the third-party observation data or indexes being comprehensively taken into account. The results show that, the rupture of the Nepal earthquake extended by over 100 km east by south. The maximum slip of the earthquake was about 6.5-6.7 m, and most of the slip is confined at depths of 8 -20 kin, consistent with the depth distribution of aftershocks. The method for reducing the multiplicity of solutions to rupture slip distribution in this paper was ever used in inversion of rupture slip distri- bution for the 2008 Wenchuan and 2013 Lushan earthquakes, and the third-party measurement - surface dislocation has very large effect on reducing the multiplicity of solutions to inversion of the Wenchuan earthquake. Other priori information or indicators, such as fault strike, dip, earthquake magnitude, seismic activity, Coulomb stress, and seismic period, can be used for beneficial validation of and comparison with inversion results. 展开更多
关键词 Multiplicity of inversion solutions Nepal earthquake Coseismic deformation Rupture slip distribution
下载PDF
Fundamental solution method for inverse source problem of plate equation
2
作者 顾智杰 谭永基 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第12期1513-1532,共20页
The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, w... The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise. 展开更多
关键词 Kirchhoff-Love plate Euler-Bernoulli beam ELASTIC inverse source problem fundamental solution method (FSM) Tikhonov regularization method meshless numericalmethod
下载PDF
Bio-inspired Design and Inverse Kinematics Solution of an Omnidirectional Humanoid Robotic Arm with Geometric and Load Capacity Constraints
3
作者 Zhichao Zhu Zirong Luo +4 位作者 Yiming Zhu Tao Jiang Minghai Xia Shanjun Chen Boyu Jin 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期778-802,共25页
Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design redu... Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload–weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots. 展开更多
关键词 Humanoid robotic arm Bio-inspired design inverse kinematics solution Load capacity constraint Geometric constraint
原文传递
Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension
4
作者 Ping-Ping Wu Jun-Chao Liu +2 位作者 Zheng Xie Jin-Shan Guo Jing-Xia Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期555-555,556-562,共8页
A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) temp... A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots(SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal(PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices. 展开更多
关键词 Carbon dots inverse opals Close-cell structure Fluorescence retention Inorganic salt solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部