A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in thi...A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.展开更多
The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microch...The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microchannels were investigated.The effects of mentioned parameters on the heat transfer coefficient through the microchannel,average Nusselt number and pressure drop for Reynolds number of 5,10,15 and 20 were examined.The obtained results showed that increasing the roughness height and number increases the pressure drop due to higher stagnation effects before and after roughness elements and decreases the Nusselt number due to higher recirculation zones effects than obstruction effects.The most reduction in Nusselt number and the most increment in pressure drop occur at the roughness height of 15%,roughness number of 6 and Reynolds number of 20 by about 10.6%and 52.8%than the smooth microchannel respectively.展开更多
Background:Metabolic dysfunction-associated fatty liver disease(MAFLD)is a common liver disease,the risk of which can be increased by poor diet.The objective of this study was to evaluate the associations between food...Background:Metabolic dysfunction-associated fatty liver disease(MAFLD)is a common liver disease,the risk of which can be increased by poor diet.The objective of this study was to evaluate the associations between food items and MAFLD,and to propose reasonable dietary recommendations for the prevention of MAFLD.Methods:Physical examination data were collected from April 2015 through August 2017 at Nanping First Hospital(n=3,563).Dietary intakes were assessed using a semi-quantitative food frequency questionnaire.The association between food intake and the risk of MAFLD was assessed by using the inverse probability weighted propensity score.Results:Beverages(soft drinks and sugar-sweetened beverages)and instant noodles were positively associated with MAFLD risk,adjusting for smoking,drinking,tea intake,and weekly hours of physical activity[adjusted odds ratio(ORadjusted):1.568;P=0.044;ORadjusted:4.363;P=0.001].Milk,tubers,and vegetables were negatively associated with MAFLD risk(ORadjusted:0.912;P=0.002;ORadjusted:0.633;P=0.007;ORadjusted:0.962;P=0.028).In subgroup analysis,the results showed that women[odds ratio(OR):0.341,95%confidence interval(CI):0.172–0.676]had a significantly lower risk of MAFLD through consuming more tubers than men(OR:0.732,95%CI:0.564–0.951).Conclusions:These findings suggest that reducing consumption of beverages(soft drinks and sugar-sweetened beverages)and instant noodles,and consuming more milk,vegetables,and tubers may reduce the risk of MAFLD.展开更多
In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of hig...In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of highperformance programmable hardware logic devices(such as FPGA or DSP).Referring to the digital realization method of inverse RC integral circuit systems,the function of the pole-zero cancellation(PZC)circuit was analyzed,a new modified cascade equivalent model of PZC was established,and the time-domain digital PZC(DPZC)recursive algorithm was derived in detail in this study.Two parameters kIand k_(D)are included in the new algorithm,where kIshould match the exponential decay time constant of the input signal to realize the pole-zero compensation,while the decay time constant of the output signal can be changed with the adjustable parameter k_(D)(which is larger than the decay time constant of the input signal).Based on the new DPZC algorithm module,two trapezoidal(triangular)shaping filters were designed and implemented.The amplitude–frequency characteristics of the output signal of the proposed trapezoidal shaping algorithm and the convolution trapezoidal shaping algorithm were compared,with fixed peaking time.The results show that the trapezoidal shaping algorithm based on DPZC can better suppress high-frequency noise.Finally,based on the Na I(Tl)scintillator(u75 mm×75 mm)detector and^(137)Cs source,the effect of the k_(D)value on the energy resolution of the DPZC trapezoidal(triangular)shaping algorithm was studied.The experimental results show that,with an increase in k_(D),the energy resolution of the system improved and reached the maximum when k_(D)was greater than 10,and the optimal energy resolution of the system was 7.72%.展开更多
Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangu...Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangular tube(DRRT)during rotary draw bending(RDB)process,Mises isotropic yield criterion,Hill’48 and Barlat/Lian anisotropic yield criteria commonly used in practical engineering are introduced to simulate RDB of DRRT.The inverse method combining uniaxial tensile test of whole tube and response surface methodology was proposed to identify the parameters of Hill’48 and Barlat/Lian yield criteria of small-sized H96 brass extrusion DRRT as well.Then based on ABAQUS/Explicit platform,the FE models of RDB process of DRRT considering Mises,Hill’48 and Barlat/Lian yield criteria were built.The results show that:The variation trend of cross-sectional deformation ratio is same when using different yield criteria.The cross-sectional deformation ratio by using Mises yield criterion is close to that by using Hill’48 yield criterion.However,there is a quite difference between by using Barlat/Lian yield criterion and by using Mises or Hill’48 yield criteria.The prediction values of cross-sectional height deformation by using three yield criteria all underestimate the experiment ones,and the prediction values of cross-sectional width deformation overestimate the experiment ones.By comparing the simulation results of cross-sectional deformation of the DRRT with different yield criteria and experiment ones,Barlat/Lian yield criterion is found to be suitable for describing the RDB process of DRRT.展开更多
Bypass Dual Throat Nozzle(BDTN)is a novel type of fluidic thrust vectoring nozzle.To improve the infrared stealth performance of BDTN,a nozzle based on BDTN is proposed and numerically simulated.Each cross-section alo...Bypass Dual Throat Nozzle(BDTN)is a novel type of fluidic thrust vectoring nozzle.To improve the infrared stealth performance of BDTN,a nozzle based on BDTN is proposed and numerically simulated.Each cross-section along the x-axis of the novel nozzle becomes a trapezoid,which is named“BDTN-TRA.”The main numerical simulation results show that BDTN-TRA can produce a thrust vectoring angle when the upper or lower bypass valve is open.The angle difference between the two conditions mentioned above is usually approximately 1°-2°.Even if the two bypasses are closed,BDTN-TRA can produce a small thrust vectoring angle at around 3°-5°.When the sidewall angle increases from 60°to 90°,the thrust coefficient and thrust vectoring angle under each work condition usually decrease.A larger aspect ratio indicates better performance.As the aspect ratio increases over 7.2,the performance of BDTN-TRA is quite close to that of BDTN with rectangular cross-sections at the same aspect ratio.These features will benefit the control and trimming for future aircraft design,especially for the flying wing layout aircraft.Last but not least,BDTN-TRA has a more extraordinary mixing performance compared with BDTN.The distributions of static temperature and axial velocity along the x-axis of BDTN-TRA with sidewall angle of 60°decrease faster than those of BDTN.When the total temperature of the inlet equals 1600 K,the static temperature difference between BDTN-TRA with sidewall angles of 60°and 90°is over 360 K at twice the length of the nozzle downstream of the nozzle exit,which is the reflection for excellent infrared stealth for the fighter.展开更多
Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation...Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation degree for design is proposed.Through the finite element method,the profile characteristics of rotor blade can be obtained efficiently and accurately,and the synchronization of parametric design and finite element analysis of structural characteristics can be realized.Then a 23-degrees of freedom non-linear beam element is used to simulate the extended one-dimensional beam,thereby a nonlinear differential equation describing the elastic motion of the rotor is established.To obtain the crosssectional target characteristics of the blades,an inverse design method is proposed for cross-section components based on combinatorial optimization algorithm.The calculation and validation work show that the proposed model can effectively analyze the aeroelastic characteristics of general composite rotors.Further,the influence of cross-sectional parameters on the aeroelastic stability and hub loads of hingeless rotor is analyzed and some remarkable conclusions are obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.61871072)。
文摘A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.
文摘The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microchannels were investigated.The effects of mentioned parameters on the heat transfer coefficient through the microchannel,average Nusselt number and pressure drop for Reynolds number of 5,10,15 and 20 were examined.The obtained results showed that increasing the roughness height and number increases the pressure drop due to higher stagnation effects before and after roughness elements and decreases the Nusselt number due to higher recirculation zones effects than obstruction effects.The most reduction in Nusselt number and the most increment in pressure drop occur at the roughness height of 15%,roughness number of 6 and Reynolds number of 20 by about 10.6%and 52.8%than the smooth microchannel respectively.
文摘Background:Metabolic dysfunction-associated fatty liver disease(MAFLD)is a common liver disease,the risk of which can be increased by poor diet.The objective of this study was to evaluate the associations between food items and MAFLD,and to propose reasonable dietary recommendations for the prevention of MAFLD.Methods:Physical examination data were collected from April 2015 through August 2017 at Nanping First Hospital(n=3,563).Dietary intakes were assessed using a semi-quantitative food frequency questionnaire.The association between food intake and the risk of MAFLD was assessed by using the inverse probability weighted propensity score.Results:Beverages(soft drinks and sugar-sweetened beverages)and instant noodles were positively associated with MAFLD risk,adjusting for smoking,drinking,tea intake,and weekly hours of physical activity[adjusted odds ratio(ORadjusted):1.568;P=0.044;ORadjusted:4.363;P=0.001].Milk,tubers,and vegetables were negatively associated with MAFLD risk(ORadjusted:0.912;P=0.002;ORadjusted:0.633;P=0.007;ORadjusted:0.962;P=0.028).In subgroup analysis,the results showed that women[odds ratio(OR):0.341,95%confidence interval(CI):0.172–0.676]had a significantly lower risk of MAFLD through consuming more tubers than men(OR:0.732,95%CI:0.564–0.951).Conclusions:These findings suggest that reducing consumption of beverages(soft drinks and sugar-sweetened beverages)and instant noodles,and consuming more milk,vegetables,and tubers may reduce the risk of MAFLD.
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.19kftk02)。
文摘In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of highperformance programmable hardware logic devices(such as FPGA or DSP).Referring to the digital realization method of inverse RC integral circuit systems,the function of the pole-zero cancellation(PZC)circuit was analyzed,a new modified cascade equivalent model of PZC was established,and the time-domain digital PZC(DPZC)recursive algorithm was derived in detail in this study.Two parameters kIand k_(D)are included in the new algorithm,where kIshould match the exponential decay time constant of the input signal to realize the pole-zero compensation,while the decay time constant of the output signal can be changed with the adjustable parameter k_(D)(which is larger than the decay time constant of the input signal).Based on the new DPZC algorithm module,two trapezoidal(triangular)shaping filters were designed and implemented.The amplitude–frequency characteristics of the output signal of the proposed trapezoidal shaping algorithm and the convolution trapezoidal shaping algorithm were compared,with fixed peaking time.The results show that the trapezoidal shaping algorithm based on DPZC can better suppress high-frequency noise.Finally,based on the Na I(Tl)scintillator(u75 mm×75 mm)detector and^(137)Cs source,the effect of the k_(D)value on the energy resolution of the DPZC trapezoidal(triangular)shaping algorithm was studied.The experimental results show that,with an increase in k_(D),the energy resolution of the system improved and reached the maximum when k_(D)was greater than 10,and the optimal energy resolution of the system was 7.72%.
基金supporting by the Science and Technology Project of Shenzhen of China(Nos.JCYJ20170306160003433 and JCYJ20180306171058717)the National Natural Science Foundation of China(No.51375392)。
文摘Different yield criterion has great difference in predicting the deformation of tube with different material.In order to improve the prediction accuracy of the cross-sectional deformation of the double-ridged rectangular tube(DRRT)during rotary draw bending(RDB)process,Mises isotropic yield criterion,Hill’48 and Barlat/Lian anisotropic yield criteria commonly used in practical engineering are introduced to simulate RDB of DRRT.The inverse method combining uniaxial tensile test of whole tube and response surface methodology was proposed to identify the parameters of Hill’48 and Barlat/Lian yield criteria of small-sized H96 brass extrusion DRRT as well.Then based on ABAQUS/Explicit platform,the FE models of RDB process of DRRT considering Mises,Hill’48 and Barlat/Lian yield criteria were built.The results show that:The variation trend of cross-sectional deformation ratio is same when using different yield criteria.The cross-sectional deformation ratio by using Mises yield criterion is close to that by using Hill’48 yield criterion.However,there is a quite difference between by using Barlat/Lian yield criterion and by using Mises or Hill’48 yield criteria.The prediction values of cross-sectional height deformation by using three yield criteria all underestimate the experiment ones,and the prediction values of cross-sectional width deformation overestimate the experiment ones.By comparing the simulation results of cross-sectional deformation of the DRRT with different yield criteria and experiment ones,Barlat/Lian yield criterion is found to be suitable for describing the RDB process of DRRT.
基金support of the National Science and Technology Major Project,China(No.2019-II-0007-0027)the Defense Industrial Technology Development Program,China(No.JCKY2019605D001)+3 种基金the Advanced Jet Propulsion Creativity Center,Aero Engine Academy of China(No.HKCX2020-02-011)the Aeronautics Power Foundation,China(No.6141B09050383)the Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory of China,the Jiangsu Funding Program for Excellent Postdoctoral Talent,China(No.2022ZB214)the China Postdoctoral Science Foundation。
文摘Bypass Dual Throat Nozzle(BDTN)is a novel type of fluidic thrust vectoring nozzle.To improve the infrared stealth performance of BDTN,a nozzle based on BDTN is proposed and numerically simulated.Each cross-section along the x-axis of the novel nozzle becomes a trapezoid,which is named“BDTN-TRA.”The main numerical simulation results show that BDTN-TRA can produce a thrust vectoring angle when the upper or lower bypass valve is open.The angle difference between the two conditions mentioned above is usually approximately 1°-2°.Even if the two bypasses are closed,BDTN-TRA can produce a small thrust vectoring angle at around 3°-5°.When the sidewall angle increases from 60°to 90°,the thrust coefficient and thrust vectoring angle under each work condition usually decrease.A larger aspect ratio indicates better performance.As the aspect ratio increases over 7.2,the performance of BDTN-TRA is quite close to that of BDTN with rectangular cross-sections at the same aspect ratio.These features will benefit the control and trimming for future aircraft design,especially for the flying wing layout aircraft.Last but not least,BDTN-TRA has a more extraordinary mixing performance compared with BDTN.The distributions of static temperature and axial velocity along the x-axis of BDTN-TRA with sidewall angle of 60°decrease faster than those of BDTN.When the total temperature of the inlet equals 1600 K,the static temperature difference between BDTN-TRA with sidewall angles of 60°and 90°is over 360 K at twice the length of the nozzle downstream of the nozzle exit,which is the reflection for excellent infrared stealth for the fighter.
文摘Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation degree for design is proposed.Through the finite element method,the profile characteristics of rotor blade can be obtained efficiently and accurately,and the synchronization of parametric design and finite element analysis of structural characteristics can be realized.Then a 23-degrees of freedom non-linear beam element is used to simulate the extended one-dimensional beam,thereby a nonlinear differential equation describing the elastic motion of the rotor is established.To obtain the crosssectional target characteristics of the blades,an inverse design method is proposed for cross-section components based on combinatorial optimization algorithm.The calculation and validation work show that the proposed model can effectively analyze the aeroelastic characteristics of general composite rotors.Further,the influence of cross-sectional parameters on the aeroelastic stability and hub loads of hingeless rotor is analyzed and some remarkable conclusions are obtained.