In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet...We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.展开更多
By studying the distribution of zeros of combinations of a Dirichlet L-function and its first-order derivative,we prove that every Dirichlet L-function has more than 66.7934%distinct zeros.
An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;usi...An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of O(N), its truncation error goes like O(h2), and it is more precise and faster than the Thomas algorithm.展开更多
We study the localisation inverse problem corresponding to Laplacian transport of absorbing cell. Our main goal is to find sufficient Dirichelet-to-Neumann conditions insuring that this inverse problem is uniquely sol...We study the localisation inverse problem corresponding to Laplacian transport of absorbing cell. Our main goal is to find sufficient Dirichelet-to-Neumann conditions insuring that this inverse problem is uniquely soluble. In this paper, we show that the conformal mapping technique is adopted to this type of problem in the two dimensional case.展开更多
In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for the Schrödinger equation in 3-dimensional. We numerically implement the coefficie...In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for the Schrödinger equation in 3-dimensional. We numerically implement the coefficients of the explicit formulas. In this work, Lipschitz type stability is established near the edge of the domain with giving estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neuman map.展开更多
In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann op...In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann operators corresponding to a potential radial have the same properties for hyperbolic differential equations as for elliptic differential equations. We numerically implement the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is established near the edge of the domain by an estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neumann map in the inverse problem for a hyperbolic differential equation.展开更多
The main purpose of this paper is to use the estimate for character sums and the method of trigonometric sums to study the 2k-th power mean of the inversion of Dirichlet L-functions with the weight of the Gauss sums, ...The main purpose of this paper is to use the estimate for character sums and the method of trigonometric sums to study the 2k-th power mean of the inversion of Dirichlet L-functions with the weight of the Gauss sums, and give a sharper asymptotic formula.展开更多
Consider the determination of Dirichlet-to-Neumann(D-to-N) map from the far-field pattern in inverse scattering problems,which is the key step in some recently developed inversion schemes such as probe method.Essentia...Consider the determination of Dirichlet-to-Neumann(D-to-N) map from the far-field pattern in inverse scattering problems,which is the key step in some recently developed inversion schemes such as probe method.Essentially,this problem is related to the reconstruction of the scattered wave from its far-field data.We firstly prove the well-known uniqueness result of the D-to-N map from the far-field pattern using a new scheme based on the mixed reciprocity principle.The advantage of this new proof scheme is that it provides an efficient algorithm for computing the D-to-N map,avoiding the numerical differentiation for the scattered wave.Then combining with the classical potential theory,a simple and feasible regularizing reconstruction scheme for the D-to-N map is proposed.Finally the stability estimate for the reconstruction with noisy input data is rigorously analyzed.展开更多
Let q ≥ 3 be an integer, and χ be a Dirichlet character modulo q, L(s, χ) denote the Dirichlet L-function corresponding to χ. In this paper, we show some early information on the mean value of the Dirichlet L-fu...Let q ≥ 3 be an integer, and χ be a Dirichlet character modulo q, L(s, χ) denote the Dirichlet L-function corresponding to χ. In this paper, we show some early information on the mean value of the Dirichlet L-functions and give some new identities forwhere a = 2, 3, or 4. Then we give general identities for the case that the integer a divides q - 1. Keywords Dirichlet L-functions, Dedekind sum, trigonometric formula, MSbius inversion formula展开更多
In this paper, by making use of Abel’s theorem on power series, the reflection formula and the function equation for Hurwitz zeta function, we establish several expressions of Dirichlet Lfunction at positive integers...In this paper, by making use of Abel’s theorem on power series, the reflection formula and the function equation for Hurwitz zeta function, we establish several expressions of Dirichlet Lfunction at positive integers by means of some finite sums of different types. Some special cases as well as immediate consequences of the results presented here are also considered.展开更多
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
文摘We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media (γ = I). Our main results concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann operator . In this paper, we define explicitly operator , and we show that Green-Ostrogradski theorem is adopted to this type of problem in three dimensional case.
基金This work was supported in part by NSFC(11871187)the Fundamental Research Funds for the Central Universities of China。
文摘By studying the distribution of zeros of combinations of a Dirichlet L-function and its first-order derivative,we prove that every Dirichlet L-function has more than 66.7934%distinct zeros.
文摘An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of O(N), its truncation error goes like O(h2), and it is more precise and faster than the Thomas algorithm.
文摘We study the localisation inverse problem corresponding to Laplacian transport of absorbing cell. Our main goal is to find sufficient Dirichelet-to-Neumann conditions insuring that this inverse problem is uniquely soluble. In this paper, we show that the conformal mapping technique is adopted to this type of problem in the two dimensional case.
文摘In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for the Schrödinger equation in 3-dimensional. We numerically implement the coefficients of the explicit formulas. In this work, Lipschitz type stability is established near the edge of the domain with giving estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neuman map.
文摘In this paper, we provide an explicit expression for the full Dirichlet-to-Neumann map corresponding to a radial potential for a hyperbolic differential equation in 3-dimensional. We show that the Dirichlet-Neumann operators corresponding to a potential radial have the same properties for hyperbolic differential equations as for elliptic differential equations. We numerically implement the coefficients of the explicit formulas. Moreover, a Lipschitz type stability is established near the edge of the domain by an estimation constant. That is necessary for the reconstruction of the potential from Dirichlet-to-Neumann map in the inverse problem for a hyperbolic differential equation.
基金supported by the Doctorate Foundation of Xi'an Jiaotong University
文摘The main purpose of this paper is to use the estimate for character sums and the method of trigonometric sums to study the 2k-th power mean of the inversion of Dirichlet L-functions with the weight of the Gauss sums, and give a sharper asymptotic formula.
基金supported by National Natural Science Foundation of China (Grant No.10771033)
文摘Consider the determination of Dirichlet-to-Neumann(D-to-N) map from the far-field pattern in inverse scattering problems,which is the key step in some recently developed inversion schemes such as probe method.Essentially,this problem is related to the reconstruction of the scattered wave from its far-field data.We firstly prove the well-known uniqueness result of the D-to-N map from the far-field pattern using a new scheme based on the mixed reciprocity principle.The advantage of this new proof scheme is that it provides an efficient algorithm for computing the D-to-N map,avoiding the numerical differentiation for the scattered wave.Then combining with the classical potential theory,a simple and feasible regularizing reconstruction scheme for the D-to-N map is proposed.Finally the stability estimate for the reconstruction with noisy input data is rigorously analyzed.
基金Supported by Basic Research Fund of the Northwestern Polytechnical University of China(Grant Nos.JC2011023 and JC2012252)
文摘Let q ≥ 3 be an integer, and χ be a Dirichlet character modulo q, L(s, χ) denote the Dirichlet L-function corresponding to χ. In this paper, we show some early information on the mean value of the Dirichlet L-functions and give some new identities forwhere a = 2, 3, or 4. Then we give general identities for the case that the integer a divides q - 1. Keywords Dirichlet L-functions, Dedekind sum, trigonometric formula, MSbius inversion formula
基金Supported by the National Natural Science Foundation of China(Grant No.11326050)
文摘In this paper, by making use of Abel’s theorem on power series, the reflection formula and the function equation for Hurwitz zeta function, we establish several expressions of Dirichlet Lfunction at positive integers by means of some finite sums of different types. Some special cases as well as immediate consequences of the results presented here are also considered.