Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, se...Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.展开更多
A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the ...A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the complex rock physics model is expanded into Taylor series to get the first-order approximate expression of the inverse problem of rock physics;then the damped least square method is used to solve the linearized rock physics inverse problem directly to get the analytical solution of the rock physics inverse problem. This method does not need global optimization or random sampling, but directly calculates the inverse operation, with high computational efficiency. The theoretical model analysis shows that the linearized rock physical model can be used to approximate the complex rock physics model. The application of actual logging data and seismic data shows that the linearized rock physics inversion method can obtain accurate physical parameters. This method is suitable for linear or slightly non-linear rock physics model, but may not be suitable for highly non-linear rock physics model.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor...Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods.展开更多
This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-conn...This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.展开更多
Background:Given the heightened risk of developmental challenges associated with preterm birth,it is crucial to explore interventions that may ameliorate potential adverse outcomes.This study aimed to examine whether ...Background:Given the heightened risk of developmental challenges associated with preterm birth,it is crucial to explore interventions that may ameliorate potential adverse outcomes.This study aimed to examine whether meeting the 24-h movement behavior(24-HMB)guidelines,which include recommendations on physical activity(PA),screen time(ST),and sleep(SL),is related to indicators of cognitive difficulties,internalizing problems(e.g.,depression and anxiety),and externalizing problems(e.g.,difficulties in making friends and arguing)in a sample of preterm youth(children and adolescents born preterm).Methods:In this cross-sectional study,data from 3410 preterm youth(aged 6 to 17 years)were included for data analyses.Multivariable logistic regression was used to investigate associations between meeting the 24-HMB guidelines and the above-mentioned health outcomes,while controlling for sociodemographic and health-related factors.Results:The prevalence of meeting 24-HMB guidelines varied across independent and integrated components of the 24-HMB guidelines.Meeting the ST guideline alone(p<0.05)and integrated guidelines(i.e.,ST+SL and ST+SL+PA)were associated with fewer cognitive difficulties and reduced internalizing and externalizing problems(p<0.05).Specifically,meeting the SL guideline alone and integrated guidelines(i.e.,SL+ST)were associated with lower odds of depression and anxiety(p<0.01).Additionally,meeting independent,and integrated(PA and/or ST)guidelines were associated with less pronounced difficulties in making friends and arguing(p<0.05).Meeting 24-HMB guidelines in an isolated and integrated manner are linked to better cognitive performance and fewer internalizing and externalizing problems in preterm youth.Conclusion:Results suggest that advocating for the implementation of the 24-HMB guidelines may reduce cognitive challenges and behavioral issues,which is of high relevance for improving public health.Future longitudinal studies in preterm youth should investigate how modifying specific 24-HMB behaviors,especially ST,influence cognitive difficulties,internalizing and externalizing problems in this vulnerable population.展开更多
Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only deter...Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.展开更多
Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics in...Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics inverse problems.However,all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm.What is obtained is an optimal solution of combining the petrophysical parameters with being inverted.This study introduces the alternating direction(AD)method into the MCMC algorithm(i.e.the optimized MCMC algorithm)to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion.Firstly,the Gassmann equations and Xu-White model are used to model shaly sandstone,and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established.Then,in the framework of Bayesian theory,the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter.The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity,saturation,and clay volume.展开更多
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ...Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.展开更多
Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics fr...Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics from the point of view of nonlocal physics. Namely: main principles of nonlocal physics;generalized hydrodynamic equations;magnetic field evolution in the superconductor of the second type;Hubble expansion;special theory of relativity;the problem of the interaction of matter (M) with physical vacuum (PV) is considered including the PV—M energy exchange. Application nonlocal physics to the problem of the dark matter existence—dark matter does not exist, analytical investigation.展开更多
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to...Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.展开更多
We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem sh...We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.展开更多
Rock Physics Modelling and Seismic Inversion were carried out in an Onshore Niger Delta Field for the purpose of characterizing a hydrocarbon reservoir. The aim of the study was to integrate rock physics models and se...Rock Physics Modelling and Seismic Inversion were carried out in an Onshore Niger Delta Field for the purpose of characterizing a hydrocarbon reservoir. The aim of the study was to integrate rock physics models and seismic inversion to improve the characterization of a selected reservoir using well-log and 3D seismic data sets. Seven reservoir sands were delineated using suite of logs from three wells. In this study, the sand 4 reservoir was selected for analysis. The result of petrophysical evaluation shows that the sand 4 reservoir is relatively thick (62 ft) with low water saturation (0.33), shale volume (0.11) and high porosity (0.32). These results indicate reservoir of good quality and producibility. Cross-plot of property pairs (acoustic impedance (Ip) vs. lambda-rho (λρ) and mu-rho (μρ) vs. lambda-rho (λρ) color-coded with reservoir properties reveals three distinct probable zones: hydrocarbon sand, brine sand and shale. Results show that low Ip, λρ and μρ associated with hydrocarbon charged sands correspond to low Sw and Vsh and high Ø. The integration of rock physics models and inverted rock attributes effectively delineated and improved understanding of already producing reservoirs, as well as other hydrocarbon charged sands of low Sw, Vsh, and high?Ø to the east of existing well locations, which indicate possible by-passed hydrocarbon pays. The results of this work can assist in forecasting hydrocarbon prospectivity and lessen chances of drilling dry holes in MUN onshore Niger delta field.展开更多
A new approach to solving two of the cosmological constant problems (CCPs) is proposed by introducing the Abbott-Deser (AD) method for defining Killing charges in asymptotic de Sitter space as the only consistent mean...A new approach to solving two of the cosmological constant problems (CCPs) is proposed by introducing the Abbott-Deser (AD) method for defining Killing charges in asymptotic de Sitter space as the only consistent means for defining the ground-state vacuum for the CCP. That granted, Einstein gravity will also need to be modified at short-distance nuclear scales, using instead a nonminimally coupled scalar-tensor theory of gravitation that provides for the existence of QCD’s two-phase vacuum having two different zero-point energy states as a function of temperature. Einstein gravity alone cannot accomplish this. The scalar field will be taken from bag theory in hadron physics, and the origin of the bag constant B is accounted for by gravity’s CC as B—noting that the Higgs mechanism does not account for either the curved-space origin of λ or the mass of composite hadrons. A small Hubble-scale graviton mass mg^10-33eV naturally appears external to the hadron bag, induced by λ≠0. This mass is unobservable and gravitationally gauge-dependent. It is shown to be related to the cosmological event horizon in asymptotic de Sitter space.展开更多
A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equatio...Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion.展开更多
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o...The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.展开更多
With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is gettin...With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is getting more and more importance.It is known that since a remote sensing equation falls into an integral equation of the first kind,thus leading to the fact that it is ill-posed and particularly the solution is unsteady,tremendous difficulties arise from the retrieval.This paper will present a simple review on the inversion techniques with some necessary remarks,before introducing the successful efforts with respect to such equations and the encouraging solutions achieved in recent decades by researchers of the world.展开更多
This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the sca...This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.展开更多
文摘Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-002,2016ZX05027004-001)the National Natural Science Foundation of China(41874146,41674130)+2 种基金Fundamental Research Funds for the Central University(18CX02061A)Innovative Fund Project of China National Petroleum Corporation(2016D-5007-0301)Scientific Research&Technology Development Project of China National Petroleum Corporation(2017D-3504).
文摘A linearized rock physics inversion method is proposed to deal with two important issues, rock physical model and inversion algorithm, which restrict the accuracy of rock physics inversion. In this method, first, the complex rock physics model is expanded into Taylor series to get the first-order approximate expression of the inverse problem of rock physics;then the damped least square method is used to solve the linearized rock physics inverse problem directly to get the analytical solution of the rock physics inverse problem. This method does not need global optimization or random sampling, but directly calculates the inverse operation, with high computational efficiency. The theoretical model analysis shows that the linearized rock physical model can be used to approximate the complex rock physics model. The application of actual logging data and seismic data shows that the linearized rock physics inversion method can obtain accurate physical parameters. This method is suitable for linear or slightly non-linear rock physics model, but may not be suitable for highly non-linear rock physics model.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
基金supported by the National Natural Science Foundation of China(Nos.12172273 and 11820101001)。
文摘Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods.
文摘This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.
基金supported by the Shenzhen Educational Research Funding(Grant No.zdzb2014)the Shenzhen Science and Technology Innovation Commission(Grant No.202307313000096)+3 种基金the Social Science Foundation from China’s Ministry of Education(Grant No.23YJA880093)a Post-Doctoral Fellowship(Grant No.2022M711174)the National Center for Mental Health(Grant No.Z014)a Research Excellence Scholarship of Shenzhen University(Grant No.ZYZD2305).
文摘Background:Given the heightened risk of developmental challenges associated with preterm birth,it is crucial to explore interventions that may ameliorate potential adverse outcomes.This study aimed to examine whether meeting the 24-h movement behavior(24-HMB)guidelines,which include recommendations on physical activity(PA),screen time(ST),and sleep(SL),is related to indicators of cognitive difficulties,internalizing problems(e.g.,depression and anxiety),and externalizing problems(e.g.,difficulties in making friends and arguing)in a sample of preterm youth(children and adolescents born preterm).Methods:In this cross-sectional study,data from 3410 preterm youth(aged 6 to 17 years)were included for data analyses.Multivariable logistic regression was used to investigate associations between meeting the 24-HMB guidelines and the above-mentioned health outcomes,while controlling for sociodemographic and health-related factors.Results:The prevalence of meeting 24-HMB guidelines varied across independent and integrated components of the 24-HMB guidelines.Meeting the ST guideline alone(p<0.05)and integrated guidelines(i.e.,ST+SL and ST+SL+PA)were associated with fewer cognitive difficulties and reduced internalizing and externalizing problems(p<0.05).Specifically,meeting the SL guideline alone and integrated guidelines(i.e.,SL+ST)were associated with lower odds of depression and anxiety(p<0.01).Additionally,meeting independent,and integrated(PA and/or ST)guidelines were associated with less pronounced difficulties in making friends and arguing(p<0.05).Meeting 24-HMB guidelines in an isolated and integrated manner are linked to better cognitive performance and fewer internalizing and externalizing problems in preterm youth.Conclusion:Results suggest that advocating for the implementation of the 24-HMB guidelines may reduce cognitive challenges and behavioral issues,which is of high relevance for improving public health.Future longitudinal studies in preterm youth should investigate how modifying specific 24-HMB behaviors,especially ST,influence cognitive difficulties,internalizing and externalizing problems in this vulnerable population.
基金The authors acknowledge the sponsorship of National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKj202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.
基金supported by the National Natural Science Foundation of China(No.42174146)CNPC major forwardlooking basic science and technology projects(No.2021DJ0204).
文摘Rock physics inversion is to use seismic elastic properties of underground strata for predicting reservoir petrophysical parameters.The Markov chain Monte Carlo(MCMC)algorithm is commonly used to solve rock physics inverse problems.However,all the parameters to be inverted are iterated simultaneously in the conventional MCMC algorithm.What is obtained is an optimal solution of combining the petrophysical parameters with being inverted.This study introduces the alternating direction(AD)method into the MCMC algorithm(i.e.the optimized MCMC algorithm)to ensure that each petrophysical parameter can get the optimal solution and improve the convergence of the inversion.Firstly,the Gassmann equations and Xu-White model are used to model shaly sandstone,and the theoretical relationship between seismic elastic properties and reservoir petrophysical parameters is established.Then,in the framework of Bayesian theory,the optimized MCMC algorithm is used to generate a Markov chain to obtain the optimal solution of each physical parameter to be inverted and obtain the maximum posterior density of the physical parameter.The proposed method is applied to actual logging and seismic data and the results show that the method can obtain more accurate porosity,saturation,and clay volume.
基金supported by NSFC(41930425)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-01)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)and NSFC(42274142).
文摘Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.
文摘Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics from the point of view of nonlocal physics. Namely: main principles of nonlocal physics;generalized hydrodynamic equations;magnetic field evolution in the superconductor of the second type;Hubble expansion;special theory of relativity;the problem of the interaction of matter (M) with physical vacuum (PV) is considered including the PV—M energy exchange. Application nonlocal physics to the problem of the dark matter existence—dark matter does not exist, analytical investigation.
文摘Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.
文摘We envision utilizing the versatility of a Computer Algebra System, specifically Mathematica to explore designing physics problems. As a focused project, we consider for instance a thermo-mechanical-physics problem showing its development from the ground up. Following the objectives of this investigation first by applying the fundamentals of physics principles we solve the problem symbolically. Applying the solution we investigate the sensitivities of the quantities of interest for various scenarios generating feasible numeric parameters. Although a physics problem is investigated, the proposed methodology may as well be applied to other scientific fields. The codes needed for this particular project are included enabling the interested reader to duplicate the results, extend and modify them as needed to explore various extended scenarios.
文摘Rock Physics Modelling and Seismic Inversion were carried out in an Onshore Niger Delta Field for the purpose of characterizing a hydrocarbon reservoir. The aim of the study was to integrate rock physics models and seismic inversion to improve the characterization of a selected reservoir using well-log and 3D seismic data sets. Seven reservoir sands were delineated using suite of logs from three wells. In this study, the sand 4 reservoir was selected for analysis. The result of petrophysical evaluation shows that the sand 4 reservoir is relatively thick (62 ft) with low water saturation (0.33), shale volume (0.11) and high porosity (0.32). These results indicate reservoir of good quality and producibility. Cross-plot of property pairs (acoustic impedance (Ip) vs. lambda-rho (λρ) and mu-rho (μρ) vs. lambda-rho (λρ) color-coded with reservoir properties reveals three distinct probable zones: hydrocarbon sand, brine sand and shale. Results show that low Ip, λρ and μρ associated with hydrocarbon charged sands correspond to low Sw and Vsh and high Ø. The integration of rock physics models and inverted rock attributes effectively delineated and improved understanding of already producing reservoirs, as well as other hydrocarbon charged sands of low Sw, Vsh, and high?Ø to the east of existing well locations, which indicate possible by-passed hydrocarbon pays. The results of this work can assist in forecasting hydrocarbon prospectivity and lessen chances of drilling dry holes in MUN onshore Niger delta field.
文摘A new approach to solving two of the cosmological constant problems (CCPs) is proposed by introducing the Abbott-Deser (AD) method for defining Killing charges in asymptotic de Sitter space as the only consistent means for defining the ground-state vacuum for the CCP. That granted, Einstein gravity will also need to be modified at short-distance nuclear scales, using instead a nonminimally coupled scalar-tensor theory of gravitation that provides for the existence of QCD’s two-phase vacuum having two different zero-point energy states as a function of temperature. Einstein gravity alone cannot accomplish this. The scalar field will be taken from bag theory in hadron physics, and the origin of the bag constant B is accounted for by gravity’s CC as B—noting that the Higgs mechanism does not account for either the curved-space origin of λ or the mass of composite hadrons. A small Hubble-scale graviton mass mg^10-33eV naturally appears external to the hadron bag, induced by λ≠0. This mass is unobservable and gravitationally gauge-dependent. It is shown to be related to the cosmological event horizon in asymptotic de Sitter space.
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.2652017438)the National Science and Technology Major Project of China(No.2016ZX05003-003)
文摘Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion.
基金supported by National Basic Research Program(2006CB202304)of Chinaco-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project of China(Grant No.2011ZX05004003)
文摘The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.
基金This work is supported partly by the Meteorological Office of Air Command
文摘With the swift advances in earth observation,satellite remote sensing and application of atmospheric radiation theory have been developed in the past decades,atmospheric sensing inversion with its algorithms is getting more and more importance.It is known that since a remote sensing equation falls into an integral equation of the first kind,thus leading to the fact that it is ill-posed and particularly the solution is unsteady,tremendous difficulties arise from the retrieval.This paper will present a simple review on the inversion techniques with some necessary remarks,before introducing the successful efforts with respect to such equations and the encouraging solutions achieved in recent decades by researchers of the world.
基金The Major State Basic Research Development Program Grant (2005CB321701)the Heilongjiang Education Committee Grant (11551364) of China
文摘This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.