期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
1
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
2
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
3
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiO_(x) Films Enabled with A Novel Microstructure-Control Technology
4
作者 Guibin Shen Xin Li +7 位作者 Yuqin Zou Hongye Dong Dongping Zhu Yanglin Jiang Xin Ren Ng Fen Lin Peter Müller-Buschbaum Cheng Mu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期153-159,共7页
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ... The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells. 展开更多
关键词 interfacial contact inverted and large-area perovskite solar cells photovoltaic materials porous NiO_(x)films renewable energy
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction 被引量:1
5
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI_(3)-Based Inverted Perovskite Solar Cells 被引量:1
6
作者 Xuefeng Zhu Rui Lin +5 位作者 Hao Gu Huichao Hu Zheng Liu Guichuan Xing Yibing Wu Xinhua Ouyang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期251-259,共9页
Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficienc... Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficiency and the stability of the PSCs.The additive engineering is one of the most effective approaches to overcome this problem.Most of the successful additives are extracted from the petroleum-based materials,while the research on the biomass-based additives is still lagging behind.In this paper,two ecofriendly hydroxyalkyl cellulose additives,i.e.,hydroxyethyl cellulose(HEC)and hydroxylpropyl cellulose(HPC),are investigated on the performance of the MAPbl_(3)-based inverted PSCs.Due to the strong interaction between the hydroxyl groups of the cellulose and the divalent cations of the perovskite,these additives enhance the crystal grain orientation and significantly repair the defects of the perovskite films.Working as the additives,these two cellulose derivatives show a strong passivation ability,which significantly reduces the trap density and improves the optoelectronic feature of the PSCs.Compared with the average power conversion efficiency(PCE)of the control device(19.19%),an enhancement of~10%is achieved after the addition of HEC.The optimized device(PCE=21.25%)with a long-term stability(10:80 h,PCE=20.93%)is achieved by the incorporation of the HEC additives into the precursor solution.It is the best performance among the PSCs with the cellulose additives up to now.This research provides a novel choice to develop a cost-effective and renewable additive for the PSCs with high efficiency and excellent long-term stability. 展开更多
关键词 ADDITIVES hydroxyalkyl cellulose inverted perovskite solar cells MAPbl_(3)
下载PDF
Hole‑Transport Management Enables 23%‑Efficient and Stable Inverted Perovskite Solar Cells with 84%Fill Factor
7
作者 Liming Liu Yajie Ma +7 位作者 Yousheng Wang Qiaoyan Ma Zixuan Wang Zigan Yang Meixiu Wan Tahmineh Mahmoudi Yoon‑Bong Hahn Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期154-166,共13页
NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interf... NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interface defects between hole-selective contacts(HSCs)and perovskite-active layer(PAL)still limits device efficiencyimprovement.Here,we report a graded configuration based on bothinterface-cascaded structures and p-type molecule-doped compositeswith two-/three-dimensional formamidinium-based triple-halideperovskites.We find that the interface defects-induced non-radiativerecombination presented at HSCs/PAL interfaces is remarkably suppressedbecause of efficient hole extraction and transport.Moreover,astrong chemical interaction,halogen bonding and coordination bondingare found in the molecule-doped perovskite composites,whichsignificantly suppress the formation of halide vacancy and parasitic metallic lead.As a result,NiO_(x)-based inverted PSCs present a power-conversion-efficiency over 23%with a high fill factor of 0.84 and open-circuit voltage of 1.162 V,which are comparable to the best reported around 1.56-electron volt bandgap perovskites.Furthermore,devices with encapsulation present high operational stability over 1,200 h during T_(90) lifetime measurement(the time as a function of PCE decreases to 90%of its initial value)under 1-sun illumination in ambient-air conditions. 展开更多
关键词 inverted NiO_(x)-based perovskite solar cells Hole-transport management Interface-induced defect passivation High performance and stability
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
8
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Multiple methoxy-substituted hole transporter for inverted perovskite solar cells
9
作者 Wei Yu Sajjad Ahmad +5 位作者 Hengkai Zhang Zhiliang Chen Qing Yang Xin Guo Can Li Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期127-131,共5页
Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lo... Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL. 展开更多
关键词 Multiple methoxy-substituted Wettability Small molecule Hole transporting layer inverted perovskite solar cells
下载PDF
Recent advances of interface engineering in inverted perovskite solar cells
10
作者 Shiqi Yu Zhuang Xiong +6 位作者 Zhenhan Wang Haitao Zhou Fei Ma Zihan Qu Yang Zhao Xinbo Chu Jingbi You 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期53-65,共13页
Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unst... Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unstable charge transport layers,such as the hygroscopic doped spiro-OMe TAD,which affect the long-term stability.The inverted device with the p-i-n structure owns better stability when using stable undoped organic molecular or metal oxide materials.There are significant progresses in inverted PSCs,most of them related to charge transport or interface engineering.In this review,we will mainly summarize the inverted PSCs progresses related to the interface engineering.After that,we prospect the future direction on inverted PSCs. 展开更多
关键词 inverted perovskite solar cells charge transport layer interface modification defect passivation
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
11
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
12
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 inverted perovskite solar cells perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Multifunctional anchoring of O-ligands for high-performance and stable inverted perovskite solar cells 被引量:2
13
作者 Lisha Xie Xuhong Zhao +8 位作者 Jianwei Wang Jun Li Chang Liu Shurong Wang Qinye Bao Mengjin Yang Xiaobin Niu Feng Hao Ziyi Ge 《InfoMat》 SCIE CSCD 2023年第2期34-44,共11页
Functional additives have recently been regarded as emerging candidates to improve the performance and stability of perovskite solar cells(PSCs).Herein,nicotinamide(N),2-chloronicotinamide(2Cl),and 6-chloronicotinamid... Functional additives have recently been regarded as emerging candidates to improve the performance and stability of perovskite solar cells(PSCs).Herein,nicotinamide(N),2-chloronicotinamide(2Cl),and 6-chloronicotinamide(6Cl)were employed as O-ligands to facilitate the deposition of MAPbI_(3)(MA=methylammonium)and MA-free FA_(0.88)Cs_(0.12)PbI_(2.64)Br_(0.36)(FA=formamidinium)perovskite films by multifunctional anchoring.By density functional theory(DFT)calculations and ultraviolet photoelectron spectroscopy(UPS)measurements,it is identified that the highest occupied molecular orbital(HOMO)level for additive modified MAPbI_(3)perovskite could reduce the voltage deficit for hole extraction.Moreover,due to the most favorable charge distribution and significant improvements in charge mobility and defect passivation,the power conversion efficiency(PCE)of 2Cl-MAPbI_(3)PSCs was significantly improved from 19.32%to 21.12%.More importantly,the two-dimensional grazing-incidence wide-angle X-ray scattering(GIWAXS)analysis showed that PbI_(2) defects were effectively suppressed and femtosecond transient absorption(TA)spectroscopy demonstrated that the trap-assisted recombination at grain boundaries was effectively inhibited in the 2Cl-MA-free film.As a result,the thermally stable 2Cl-MA-free PSCs achieved a remarkable PCE of 23.13%with an open-circuit voltage(V_(oc))of 1.164 V and an ultrahigh fill factor(FF)of 85.7%.Our work offers a practical strategy for further commercializing stable and efficient PSCs. 展开更多
关键词 additive engineering carrier non-radiative recombination defects passivation formamidinecesium inverted perovskite solar cells
原文传递
Recent progress of inverted organic-inorganic halide perovskite solar cells 被引量:1
14
作者 Dongyang Li Yulan Huang +4 位作者 Zhiwei Ren Abbas Amini Aleksandra B.Djurišic Chun Cheng Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期168-191,共24页
In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide ... In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization. 展开更多
关键词 inverted perovskite solar cells Interface engineering Additive engineering Tandem solar cells Integrated solar cells
下载PDF
Electrodeposited transparent PEDOT for inverted perovskite solar cells:improved charge transport and catalytic performances 被引量:3
15
作者 Cong-Tan Zhu Ying Yang +4 位作者 Fei-Yu Lin Yuan Luo Shu-Peng Ma Liu Zhu Xue-Yi Guo 《Rare Metals》 SCIE EI CAS CSCD 2021年第9期2402-2414,共13页
The acidic, corrosive effect of sodium polystyrene sulfonate(PSS) in poly 3,4-ethylenedioxythiophene:sodium polystyrene sulfonate(PEDOT:PSS) limits the stability of inverted perovskite solar cells(PSCs) based on the I... The acidic, corrosive effect of sodium polystyrene sulfonate(PSS) in poly 3,4-ethylenedioxythiophene:sodium polystyrene sulfonate(PEDOT:PSS) limits the stability of inverted perovskite solar cells(PSCs) based on the ITO/PEDOT:PSS/perovskite/PCBM/BCP/Ag structure. In this work, a poly 3,4-ethylenedioxythiophene(PEDOT) hole transport layer(HTL) with high hole mobility and good catalytic performance was prepared by electrochemical cyclic voltammetry(CV) method for inverted PSCs. By controlling the CV cycles(from 1 to 5 cycles) and EDOT monomer solution concentration(from0.5 to 2.0 mmol·L^(-1)) of electrochemical deposition, the thickness, morphology, optical and electrochemical properties of PEDOT could be accurately adjusted. The optimal photovoltaic performance with current density(J_(sc)) of 22.19 mA·cm^(-2), open circuit voltage(V_(oc)) of 0.94 V, fill factor(FF) of 0.65 and photoelectric conversion efficiency of 13.56% was obtained when deposition of PEDOT with 1 CV cycle and EDOT concentration of 0.5 mmol·L^(-1). At this point, the perovskite showed good crystallization,optimal optical, charge transport and recombination performance, resulting in better V_(oc)and photoelectric conversion efficiency(PCE) compared to the devices with higher CV cycle numbers and 3,4-ethylenedioxythiophene(EDOT) concentration. For comparison with spin-coated PEDOT:PSS, the device with electrodeposited PEDOT showed improved J_(sc)and comparable V_(oc), which may result from its better charge transport and catalytic ability.The device with spin-coated PEDOT:PSS showed photoelectric conversion efficiency of 12.25%, which was lower than that based on electrodeposited PEDOT(13.56%) with1 CV cycles and 0.5 mmol·L^(-1) EDOT concentration. And the device with electrodeposited PEDOT as HTLs showed more excellent air stability. In ambient air((32 ± 5) ℃ and RH: 70% ± 20%), it still maintained more than 80%of the initial photoelectric conversion efficiency after1000 h. In comparison, the photoelectric conversion efficiency of the device with PEDOT:PSS decreased to 20% of the initial value after storage for 500 h. From this study, a facial and low-cost way to prepare PEDOT HTL with high performances that better than the traditional PEDOT:PSS has been explored, which is expected to eliminate the acidic, corrosive effect of PSS in PEDOT:PSS. 展开更多
关键词 Electrochemically cyclic voltammetry inverted perovskite solar cells Electrodeposited PEDOT Hole mobility Tafel analysis
原文传递
Interfacial stabilization for inverted perovskite solar cells with long-term stability 被引量:3
16
作者 Wei Chen Bing Han +12 位作者 Qin Hu Meng Gu Yudong Zhu Wenqiang Yang Yecheng Zhou Deying Luo Fang-Zhou Liu Rui Cheng Rui Zhu Shien-Ping Feng Aleksandra B.Djurišić Thomas P.Russell Zhubing He 《Science Bulletin》 SCIE EI CSCD 2021年第10期991-1002,M0004,共13页
Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial ... Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial management strategy using a boron chloride subphthalocyanine(Cl_(6)SubPc)/fullerene electron-transport layer,which not only passivates the interfacial defects in the perovskite,but also suppresses halide diffusion as evidenced by multiple techniques,including visual element mapping by electron energy loss spectroscopy.As a result,we obtain inverted PSCs with an efficiency of 22.0%(21.3%certified),shelf life of 7000 h,T_(80) of 816 h under damp heat stress(compared to less than 20 h without Cl_(6)SubPc),and initial performance retention of 98%after 2000 h at 80℃in inert environment,90%after 2034 h of illumination and maximum power point tracking in ambient for encapsulated devices and 95%after 1272 h outdoor testing ISOS-O-1.Our strategy and results pave a new way to move PSCs forward to their potential commercialization solidly. 展开更多
关键词 Interfacial stabilization inverted perovskite solar cells Long-term stability NIO Halide ions diffusion
原文传递
Recent advances in developing high‑performance organic hole transporting materials for inverted perovskite solar cells 被引量:2
17
作者 Xianglang Sun Zonglong Zhu Zhong’an Li 《Frontiers of Optoelectronics》 EI CSCD 2022年第4期51-64,共14页
Inverted perovskite solar cells(PVSCs)have recently made exciting progress,showing high power conversion efciencies(PCEs)of 25%in single-junction devices and 30.5%in silicon/perovskite tandem devices.The hole transpor... Inverted perovskite solar cells(PVSCs)have recently made exciting progress,showing high power conversion efciencies(PCEs)of 25%in single-junction devices and 30.5%in silicon/perovskite tandem devices.The hole transporting material(HTM)in an inverted PVSC plays an important role in determining the device performance,since it not only extracts/transports holes but also afects the growth and crystallization of perovskite flm.Currently,polymer and self-assembled monolayer(SAM)have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs,high stability and adaptability to large area devices.In this review,recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized,including molecular design strategies and the correlation between molecular structure and device performance.We hope this review can inspire further innovative development of HTMs for wide applications in highly efcient and stable inverted PVSCs and the tandem devices. 展开更多
关键词 inverted perovskite solar cells High-performance Hole transporting materials Polymer semiconductors Self-assembled monolayer
原文传递
Effective Surface Treatment for High‑Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% 被引量:2
18
作者 Sheng Fu Xiaodong Li +3 位作者 Li Wan Wenxiao Zhang Weijie Song Junfeng Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期133-145,共13页
Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the ... Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the regular.However,relatively low opening circuit voltage(Voc)and limited moisture stability have lagged their progress far from the regular.Here,we propose an effective surface treatment strategy with high-temperature FABr treatment to address these issues.The induced ions exchange can not only adjust energy level,but also gift effective passivation.Meanwhile,the gradient distribution of FA+can accelerate the carriers transport to further suppress bulk recombination.Besides,the Br-rich surface and FA+substitution can isolate moisture erosions.As a result,the optimized devices show champion efficiency of 15.92%with Voc of 1.223 V.In addition,the tolerance of humidity and operation get significant promotion:maintaining 91.7%efficiency after aged at RH 20%ambient condition for 1300 h and 81.8%via maximum power point tracking at 45°C for 500 h in N2.Furthermore,the unpackaged devices realize the rare reported air operational stability and,respectively,remain almost efficiency(98.9%)after operated under RH 35%for 600 min and 91.2%under RH 50%for 300 min. 展开更多
关键词 CsPbI2Br inverted perovskite solar cells Effective passivation Voc loss Stability
下载PDF
Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells 被引量:3
19
作者 Rui Li Chongwen Li +9 位作者 Maning Liu Paola Vivo Meng Zheng Zhicheng Dai Jingbo Zhan Benlin He Haiyan Li Wenjun Yang Zhongmin Zhou Haichang Zhang 《CCS Chemistry》 CAS 2022年第9期3084-3094,共11页
Although many dopant-free hole transport materials(HTMs)for perovskite solar cells(PSCs)have been investigated in the literature,novel and useful molecular designs for high-performance HTMs are still needed.In this wo... Although many dopant-free hole transport materials(HTMs)for perovskite solar cells(PSCs)have been investigated in the literature,novel and useful molecular designs for high-performance HTMs are still needed.In this work,a hydrogen-bonding association system(NH⋯CO)between amide and carbonyl is introduced into the pure HTM layer. 展开更多
关键词 hydrogen bonding dopant-free hole transport material inverted perovskite solar cell high efficiency stability
原文传递
Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds 被引量:1
20
作者 ChengboTian German Betancourt-Solis +6 位作者 Ziang Nan Kaikai Liu Kebin Lin Jianxun Lu LiqiangXie Luis Echegoyen Zhanhua Wei 《Science Bulletin》 SCIE EI CSCD 2021年第4期339-346,M0004,共9页
Fullerene-based electron-transporting layers(ETLs)significantly influence the defect passivation and device performance of inverted perovskite solar cells(PSCs).However,theπ-cage structures of fullerenes lead to a st... Fullerene-based electron-transporting layers(ETLs)significantly influence the defect passivation and device performance of inverted perovskite solar cells(PSCs).However,theπ-cage structures of fullerenes lead to a strong tendency to self-aggregate,which affects the long-term stability of the corresponding PSCs.Experimental results revealed that[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)-based ETLs exhibit a certain degree of self-aggregation that affects the stability of the device,particularly under continuous irradiation stress.To modulate the aggregation behavior,we replaced a methyl hydrogen of PCBM with a phenyl group to yield[6,6]-phenyl-C61-butyric acid benzyl ester(PCBB).As verified through X-ray crystallography,this minor structural modification results in more non-covalent intermolecular interactions,which effectively enhanced the electron-transporting ability of the PCBB-based ETL and led to an efficiency approaching 20%.Notably,the enhanced intermolecular forces of PCBB suppressed its self-aggregation,and the corresponding device showed significantly improved stability,retaining approximately 90%of its initial efficiency after 600 h under one-sun irradiation with maximum power point tracking.These findings provide a viable approach for the design of new fullerene derivatives to tune their intermolecular interactions to suppress self-aggregation within the ETL for highperformance PSCs. 展开更多
关键词 Functionalized fullerene SELF-AGGREGATION Intermolecular interaction Operation stability inverted perovskite solar cells
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部