The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and el...The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.展开更多
The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount...The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.展开更多
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D...A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.展开更多
In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and micro...In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.展开更多
Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct ...Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.展开更多
Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800...A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.展开更多
The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from...The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.展开更多
The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activi...The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activity range of 0.01-1.00.A predominant co-region of LiNiO2,LiCoO2 and LiMnO2 oxides(Li-Ni-Co-Mncomposite oxide)is found in the Li-Ni-Co-Mn-H2O potential-pH diagrams,in which the co-precipitation region expands towards lower pH with rising temperature,indicating the enhanced possibility of synthesizing Li-Ni-Co-Mn composite oxide in aqueous solution.The experimental results prove that it is feasible to prepare the LiNi0.5Co0.2Mn0.3O2 cathode materials(NCM523)by an aqueous routine.The as-prepared lithiated precursor and NCM523 both inherit the spherical morphology of the hydroxide precursor and the obtained NCM523 has a hexagonalα-NaFeO2 structure with good crystallinity.It is reasonable to conclude that the aqueous routine for preparing NCM cathode materials is a promising method with the guidance of the reliable potential-pH diagrams to some extent.展开更多
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec...Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.展开更多
Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irrad...Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.展开更多
Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During...Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.展开更多
Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The u...Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.展开更多
A new form of Cu2O, disk-like structure with 60 nm in thickness and 2 μm in diameter,has been successfully synthesized in bulk quantities by polyol process in the presence of PVP K-30.
Y 2O 3: Eu nanocrystals were synthesized by EDTA complexing sol gel process at a relatively low temperature, in which ethylen diamine tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelat...Y 2O 3: Eu nanocrystals were synthesized by EDTA complexing sol gel process at a relatively low temperature, in which ethylen diamine tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelating agent and polymerization agent respectively. Formation process of Y 2O 3:Eu and structure characterization were carried out by TG DTA, XRD, SEM/EDX. The results show that pure cubic phase Y 2O 3: Eu nanocrystalsere is produced after the precursor calcinated at 600 ℃ for 2 h, and the crystallinity increases with increasing calcination temperature. The nanoparticles of the Y 2O 3: Eu are basically spherical in shape. The mean particle size increases from about 30 to 70 nm when the calcination temperature increases from 600 to 1000 ℃. The luminescent properties of phosphor were analyzed by measuring the excitation and emission spectra. The main emission peak of the sample is around 612 nm, resulting in a red emission. The emission intensity increases with the calcination temperature. Compared with microsized Y 2O 3: Eu phosphors prepared by a conventional method, nanosized Y 2O 3: Eu synthesized by the present work, gives and a clear red shift in the emission spectrum. Moreover, the quenching concentration of Eu is raised.展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(2009WK2007)supported by Key Project of Science and Technology Department of Hunan Province,ChinaProject(CX2009B133)supported by Colleges and Universities in Hunan Province Plans to Graduate Research and Innovation,China
文摘The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.
基金Project supported by the Science Project of Harbin City(No. H2001-12)the Youth Foundation of School of Municipal and Environmental Engineering in Harbin Institute of Technology(No. 01306914).
文摘The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.
基金Supported by Key Technology Research and Development Program of the Tenthfive-year plan (2001BA610A-09), the NationalNatural Science Foundation of China (No. 50478040) and 863 Hi-Technology Research and Development Program of China(No.2004AA601020)
文摘A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.
基金This work was supported by the National Natural Science Foundation of China (No. 50432010, 50372037).
文摘In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters.
文摘Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
基金supported by the Key Tech-nologies R&D Program of China during the 11th Five-Year Plan period (2006BAD17B02)Central Public Research Institutes Basic Funds for Research and Development (Institute of Agro-Environmental Protection,Ministry of Agriculture), China
文摘A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.
基金Project(50674048) supported by the National Natural Science Foundation of China Project(20080431069) supported by China Postdoctoral Science FoundationProject(CX10B-257Z) supported by Postgraduate Cultivation and Innovation Foundation of Jiangsu Province,China
文摘The nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5,molar fraction) fibers with fine diameters and high aspect ratios(length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts.The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy,X-ray diffractometry and scanning electron microscopy.The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer.The nanocomposite fibers consisting of ferrite(CoFe2O4) and perovskite(BaTiO3) are formed at the calcination temperature of 900 ℃ for 2 h.The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 ℃.The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology.The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size,while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 ℃.The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1-x)BaTiO3(x=0.2,0.3,0.4,0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.
基金Project(FA2019015) supported by the Government of Chongzuo,Guangxi Zhuang Autonomous Region,ChinaProject(AD18281073) supported by Science and Technology Department of Guangxi Zhuang Autonomous Region,China
文摘The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activity range of 0.01-1.00.A predominant co-region of LiNiO2,LiCoO2 and LiMnO2 oxides(Li-Ni-Co-Mncomposite oxide)is found in the Li-Ni-Co-Mn-H2O potential-pH diagrams,in which the co-precipitation region expands towards lower pH with rising temperature,indicating the enhanced possibility of synthesizing Li-Ni-Co-Mn composite oxide in aqueous solution.The experimental results prove that it is feasible to prepare the LiNi0.5Co0.2Mn0.3O2 cathode materials(NCM523)by an aqueous routine.The as-prepared lithiated precursor and NCM523 both inherit the spherical morphology of the hydroxide precursor and the obtained NCM523 has a hexagonalα-NaFeO2 structure with good crystallinity.It is reasonable to conclude that the aqueous routine for preparing NCM cathode materials is a promising method with the guidance of the reliable potential-pH diagrams to some extent.
基金This work was supported by Gansu Provincial Science and Technology Program(22ZD6FA005)"Light of the West"Cross-team Project of the Chinese Academy of Sciences(xbzgzdsys-202214)+1 种基金the National Natural Science Foundation of China(41871064)Qinghai Province High-level Innovative"Thousand Talents"Program.
文摘Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.
文摘Photodegradation of nitrobenzene and nitrophenols in aqueous solutions by means of UV/H2 O2 process was studied in the Rayox batch reactors. Three nitrophenol isomers were identified as main photoproducts in the irradiated NB aqueous solutions. The distribution of nitrophenol isomers follows the order p-〉 m-〉 o-nitrophenol. Other intermediates detected include nitrohydroquinone, nitrocatechol, catechol, benzoquinone, phenol, nitrate/nitrite ions, formic acid, glyoxylic acid, maleic acid, oxalic acid and some aliphatic ketones and aldehydes. The degradation of nitrobenzene and nitrophenols at initial stages follows the first-order kinetics and the decay rate constants for nitrobenzene(NB) are around l0^-3-10^-2 s^-1 and for nitrophenols are around 10^-2 s^-1. The decomposition of H2 O2 in the presence of NB and each nitrophenol isomers follows zero-order kinetics. The quantum yields at initial stages for NB decay were estimated around 0.30 to 0.36, and for NPs decay is around 0.31-0.54.
基金Technology Innovation Foundation of Middle-minor Enterprises of Science and Technology from Ministryof Science and Technology (No. 19995103020074, 20003403023018)
文摘Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.
基金Supported by the National Natural Science Foundation of China(91434117,21776077)the Shanghai Rising-Star Program(17QA1401200)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Open Project of State Key Laboratory of Chemical Engineering(SKL-Che-15C03).
文摘Direct propylene epoxidation with H2 and O2,an attractive process to produce propylene oxide(PO),has a potential explosion danger due to the coexistence of flammable gases(i.e.,C3 H6 and H2)and oxidizer(i.e.,O2).The unknown explosion limits of the multi-component feed gas mixture make it difficult to optimize the reaction process under safe operation conditions.In this work,a distribution method is proposed and verified to be effective by comparing estimated and experimental explosion limits of more than 200 kinds of flammable gas mixture.Then,it is employed to estimate the explosion limits of the feed gas mixture,some results of which are also validated by the classic Le Chatelier’s Rule and flammable resistance method.Based on the estimated explosion limits,process optimization is carried out using commercially high and inherently safe reactant concentrations to enhance reaction performance.The promising results are directly obtained through the interface called gOPT in gPROMS only by using a simple,easy-constructed and mature packed-bed reactor,such as the PO yield of 13.3%,PO selectivity of 85.1%and outlet PO fraction of 1.8%.These results can be rationalized by indepth analyses and discussion about the effects of the decision variables on the operation safety and reaction performance.The insights revealed here could shed new light on the process development of the PO production based on the estimation of the explosion limits of the multi-component feed gas mixture containing flammable gase s,inert gas and O2,followed by process optimization.
基金This work was supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Qinghai Province.
文摘A new form of Cu2O, disk-like structure with 60 nm in thickness and 2 μm in diameter,has been successfully synthesized in bulk quantities by polyol process in the presence of PVP K-30.
文摘Y 2O 3: Eu nanocrystals were synthesized by EDTA complexing sol gel process at a relatively low temperature, in which ethylen diamine tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelating agent and polymerization agent respectively. Formation process of Y 2O 3:Eu and structure characterization were carried out by TG DTA, XRD, SEM/EDX. The results show that pure cubic phase Y 2O 3: Eu nanocrystalsere is produced after the precursor calcinated at 600 ℃ for 2 h, and the crystallinity increases with increasing calcination temperature. The nanoparticles of the Y 2O 3: Eu are basically spherical in shape. The mean particle size increases from about 30 to 70 nm when the calcination temperature increases from 600 to 1000 ℃. The luminescent properties of phosphor were analyzed by measuring the excitation and emission spectra. The main emission peak of the sample is around 612 nm, resulting in a red emission. The emission intensity increases with the calcination temperature. Compared with microsized Y 2O 3: Eu phosphors prepared by a conventional method, nanosized Y 2O 3: Eu synthesized by the present work, gives and a clear red shift in the emission spectrum. Moreover, the quenching concentration of Eu is raised.
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one