In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
A two-step methodology was used to address and improve the power quality concerns for the PV-integrated microgrid system. First, partial shading was included to deal with the real-time issues. The Improved Jelly Fish ...A two-step methodology was used to address and improve the power quality concerns for the PV-integrated microgrid system. First, partial shading was included to deal with the real-time issues. The Improved Jelly Fish Algorithm integrated Perturb and Obserb (IJFA-PO) has been proposed to track the Global Maximum Power Point (GMPP). Second, the main unit-powered via DC–AC converter is synchronised with the grid. To cope with the wide voltage variation and harmonic mitigation, an auxiliary unit undergoes a novel series compensation technique. Out of various switching approaches, IJFA-based Selective Harmonic Elimination (SHE) in 120° conduction gives the optimal solution. Three switching angles were obtained using IJFA, whose performance was equivalent to that of nine switching angles. Thus, the system is efficient with minimised higher-order harmonics and lower switching losses. The proposed system outperformed in terms of efficiency, metaheuristics, and convergence. The Total Harmonic Distortion (THD) obtained was 1.32%, which is within the IEEE 1547 and IEC tolerable limits. The model was developed in MATLAB/Simulink 2016b and verified with an experimental prototype of grid-synchronised PV capacity of 260 W tested under various loading conditions. The present model is reliable and features a simple controller that provides more convenient and adequate performance.展开更多
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
文摘A two-step methodology was used to address and improve the power quality concerns for the PV-integrated microgrid system. First, partial shading was included to deal with the real-time issues. The Improved Jelly Fish Algorithm integrated Perturb and Obserb (IJFA-PO) has been proposed to track the Global Maximum Power Point (GMPP). Second, the main unit-powered via DC–AC converter is synchronised with the grid. To cope with the wide voltage variation and harmonic mitigation, an auxiliary unit undergoes a novel series compensation technique. Out of various switching approaches, IJFA-based Selective Harmonic Elimination (SHE) in 120° conduction gives the optimal solution. Three switching angles were obtained using IJFA, whose performance was equivalent to that of nine switching angles. Thus, the system is efficient with minimised higher-order harmonics and lower switching losses. The proposed system outperformed in terms of efficiency, metaheuristics, and convergence. The Total Harmonic Distortion (THD) obtained was 1.32%, which is within the IEEE 1547 and IEC tolerable limits. The model was developed in MATLAB/Simulink 2016b and verified with an experimental prototype of grid-synchronised PV capacity of 260 W tested under various loading conditions. The present model is reliable and features a simple controller that provides more convenient and adequate performance.