期刊文献+
共找到853篇文章
< 1 2 43 >
每页显示 20 50 100
Review of Fault-tolerant Control for Motor Inverter Failure with Operational Quality Considered
1
作者 Yuxuan Du Wenxiang Zhao +2 位作者 Yihua Hu Jinghua Ji Tao Tao 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期202-215,共14页
In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,whe... In recent years,motor drive systems have garnered increasing attention due to their high efficiency and superior control performance.This is especially apparent in aerospace,marine propulsion,and electric vehicles,where high performance,efficiency,and reliability are crucial.The ability of the drive system to maintain long-term fault-tolerant control(FTC)operation after a failure is essential.The likelihood of inverter failures surpasses that of other components in the drive system,highlighting its critical importance.Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made.The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure.This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade.These strategies are categorized into three types based on post-fault operational quality:rescue,remedy,and reestablishment.The paper discusses each typical control strategy and its research focus,the strengths and weaknesses of various algorithms,and recent advancements in FTC.Finally,this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research. 展开更多
关键词 FAULT-TOLERANT Motor drive Operation quality inverter failure
下载PDF
A novel cascaded H-bridge photovoltaic inverter with flexible arc suppression function
2
作者 Junyi Tang Wei Gao 《Global Energy Interconnection》 EI CSCD 2024年第4期513-527,共15页
This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elim... This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations. 展开更多
关键词 Photovoltaic inverter Flexible arc suppression Adaptive control Fuzzy neural network Sliding mode control Exit strategy
下载PDF
Coordinated Capacitor Voltage Balancing Method for Cascaded H-bridge Inverter with Supercapacitor and DC-DC Stage
3
作者 Ye Zhang Zixin Li +2 位作者 Fanqiang Gao Cong Zhao Yaohua Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期191-201,共11页
Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi... Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method. 展开更多
关键词 Cascaded H-bridge inverter(CHBI) Hybrid modulation strategy(HMS) Capacitor voltage balancing DClink voltage fluctuation Supercapacitor(SC)
下载PDF
Adaptive Predefined-Time Backstepping Control for Grid Connected Photovoltaic Inverter
4
作者 Jiarui Zhang Dan Liu +4 位作者 Kan Cao Ping Xiong Xiaotong Ji Yanze Xu Yunfei Mu 《Energy Engineering》 EI 2024年第8期2065-2083,共19页
The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin... The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter. 展开更多
关键词 Photovoltaic inverter system backstepping technology predefined-time control adaptive control
下载PDF
An Algorithm for Short-Circuit Current Interval in Distribution Networks with Inverter Type Distributed Generation Based on Affine Arithmetic
5
作者 Yan Zhang Bowen Du +3 位作者 Benren Pan GuannanWang Guoqiang Xie Tong Jiang 《Energy Engineering》 EI 2024年第7期1903-1920,共18页
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc... During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems. 展开更多
关键词 Short circuit calculation inverter type distributed power supplies affine arithmetic distribution network
下载PDF
Review of Three-phase Soft Switching Inverters and Challenges for Motor Drives
6
作者 Haifeng Lu Qiao Wang +1 位作者 Jianyun Chai Yongdong Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期177-190,共14页
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ... For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward. 展开更多
关键词 Soft switching inverters Zero-voltage switching Electric vehicles Motor drives
下载PDF
Estimating the Input Power of a Power Plant Using the Efficiency of the Inverter
7
作者 Toussaint Tilado Guingane Sosthène Tassembedo +3 位作者 Eric Korsaga Dominique Bonkoungou Zacharie Koalaga François Zougmore 《Smart Grid and Renewable Energy》 2024年第3期99-106,共8页
The study focuses on estimating the input power of a power plant from available data, using the theoretical inverter efficiency as the key parameter. The paper addresses the problem of missing data in power generation... The study focuses on estimating the input power of a power plant from available data, using the theoretical inverter efficiency as the key parameter. The paper addresses the problem of missing data in power generation systems and proposes an approach based on the efficiency formula widely documented in the literature. In the absence of input data, this method makes it possible to estimate the plant’s input power using data extracted from the site, in particular that provided by the Ministry of the Environment. The importance of this study lies in the need to accurately determine the input power in order to assess the overall performance of the energy system. 展开更多
关键词 ESTIMATION Data MISSING INPUT Power EFFICIENCY inverter
下载PDF
Model Predictive Control for Cascaded H-Bridge PV Inverter with Capacitor Voltage Balance
8
作者 Xinwei Wei Wanyu Tao +4 位作者 Xunbo Fu Xiufeng Hua Zhi Zhang Xiaodan Zhao Chen Qin 《Journal of Electronic Research and Application》 2024年第2期79-85,共7页
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc... We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules. 展开更多
关键词 Model predictive control(MPC) Photovoltaic system Cascaded H-bridge(CHB)inverter Capacitor voltage balance
下载PDF
AC fault ride through control strategy on inverter side of hybrid HVDC transmission systems 被引量:7
9
作者 Zexin ZHOU Zhengguang CHEN +4 位作者 Xingguo WANG Dingxiang DU Guosheng YANG Yizhen WANG Liangliang HAO 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第5期1129-1141,共13页
Hybrid high-voltage direct current(HVDC)transmission systems employ a new type of HVDC transmission topology that combines the advantages of the linecommutated converter system and the voltage-source converter system.... Hybrid high-voltage direct current(HVDC)transmission systems employ a new type of HVDC transmission topology that combines the advantages of the linecommutated converter system and the voltage-source converter system.They can improve the efficiency and reliability of long-distance power transmission.However,realizing alternating-current(AC)grid-fault ride through on the inverter side of a hybrid HVDC transmission system is a challenge considering that a voltage-source converter based HVDC(VSC-HVDC)is used on the inverter side.In this study,a control strategy for an overvoltage fixed trigger angle based on the power-balance method is developed by fully utilizing the operation characteristics of a hybrid HVDC transmission system.The strategy reduces the inverter-side overvoltage of the HVDC system under a fault in the inverter-side AC system.Simulations based on Gezhou Dam are conducted to validate the effectiveness of the proposed strategy. 展开更多
关键词 HYBRID HVDC transmission FAULT CROSSING Control strategy inverter side
原文传递
A novel SVPWM strategy considering neutral-point potential balancing for three-level NPC inverter 被引量:2
10
作者 陈国呈 宋文祥 +1 位作者 武慧 孙承波 《Journal of Shanghai University(English Edition)》 CAS 2006年第1期53-58,共6页
This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage ve... This paper proposes a novel SVPWM (space vector pulse width modulation) strategy for the three-level neutral-point-clamped voltage source inverter, based on the particular disposition of all the redundant voltage vectors. The new modulation approach shows superior performance for harmonic voltage and balancing control of neutral-point potential compared to the popular eight-stage centered SVPWM. It realizes suppression of inverter neutral-point potential variation by accurately modifying redundant factor of small vectors pairs, only requiring information of DC-link capacitor voltages and three-phase load currents. This is convenient to apply and is compatible of digital computer realization. Feasibility of the proposed control approach is verified by simulation and experimental results. 展开更多
关键词 neutral-point-clamped inverter neutral-point potential control SVPWM distribution factor.
下载PDF
Predictive Current Control for Voltage Source Inverters Considering Dead-Time Effect 被引量:7
11
作者 Yu Li Zhenbin Zhang +2 位作者 Kejun Li Pinjia Zhang Feng Gao 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期35-42,共8页
This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevi... This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevitably inserted between the turn off and turn on instants of power devices to avoid short circuit phenomenon.The influence of dead-time leads to output voltage vector error of three-phase inverters.Furthermore,it will result in computing deviation in cost function,and will deteriorate the performance of the system if not properly dealt with.In this paper,the problem is clearly analyzed,and the solution to this issue is proposed by introducing a synthesized voltage vector.The proposed solution is verified by Hardware-in-the-loop(HiL)test in real time,and results validate the effectiveness of the proposed solution. 展开更多
关键词 DEAD-TIME model predictive control voltage source inverter.
下载PDF
Real-Time Implementation of Solar Inverter with Novel MPPT Control Algorithm for Residential Applications
12
作者 Ayaz Ahmad Rajaji Loganathan 《Energy and Power Engineering》 2013年第6期427-435,共9页
Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture th... Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm. 展开更多
关键词 PV Cells SOLAR inverter MPPT Control DCDC CONVERTER and Current CONTROLLER
下载PDF
Effect of temperature on heavy ion-induced single event transient on 16-nm FinFET inverter chains
13
作者 蔡莉 池雅庆 +10 位作者 叶兵 刘郁竹 贺泽 王海滨 孙乾 孙瑞琪 高帅 胡培培 闫晓宇 李宗臻 刘杰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期504-510,共7页
The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a... The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature. 展开更多
关键词 heavy ion single event effect single event transient Fin FET inverter chain
下载PDF
Centralized-local PV voltage control considering opportunity constraint of short-term fluctuation
14
作者 Hanshen Li Wenxia Liu Lu Yu 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期81-91,共11页
This study proposes a two-stage photovoltaic(PV)voltage control strategy for centralized control that ignores short-term load fluctuations.In the first stage,a deterministic power flow model optimizes the 15-minute ac... This study proposes a two-stage photovoltaic(PV)voltage control strategy for centralized control that ignores short-term load fluctuations.In the first stage,a deterministic power flow model optimizes the 15-minute active cycle of the inverter and reactive outputs to reduce network loss and light rejection.In the second stage,the local control stabilizes the fluctuations and tracks the system state of the first stage.The uncertain interval model establishes a chance constraint model for the inverter voltage-reactive power local control.Second-order cone optimization and sensitivity theories were employed to solve the models.The effectiveness of the model was confirmed using a modified IEEE 33 bus example.The intraday control outcome for distributed power generation considering the effects of fluctuation uncertainty,PV penetration rate,and inverter capacity is analyzed. 展开更多
关键词 ADN inverter control Short-term volatility Chance constraint optimization Centralized-local control
下载PDF
Low-Frequency Oscillation Analysis of Grid-Connected VSG System Considering Multi-Parameter Coupling
15
作者 Shengyang Lu Tong Wang +6 位作者 Yuanqing Liang Shanshan Cheng Yupeng Cai Haixin Wang Junyou Yang Yuqiu Sui Luyu Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2373-2386,共14页
With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p... With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation. 展开更多
关键词 inverter power supply low-frequency oscillation virtual synchronous generator rotor motor equation
下载PDF
Improved Control in Single Phase Inverter Grid-Tied PV System Using Modified PQ Theory
16
作者 Nur Fairuz Mohamed Yusof Dahaman Ishak +3 位作者 Muhammad Ammirrul Atiqi Mohd Zainuri Muhammad Najwan Hamidi Zuhair Muhammed Alaas Mohamed Mostafa Ramadan Ahmed 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2441-2457,共17页
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d... Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink. 展开更多
关键词 Hysteresis current controller incremental conductance nonlinear load PQ theory single-phase inverter
下载PDF
Genetic Algorithm Based 7-Level Step-Up Inverter with Reduced Harmonics and Switching Devices
17
作者 T.Anand Kumar M.Kaliamoorthy I.Gerald Christopher Raj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3081-3097,共17页
This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted u... This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs. 展开更多
关键词 Genetic algorithm multilevel inverter pulse width modulation selective harmonic elimination switched capacitor
下载PDF
A Sensor-less Surface Mounted PMSM for Electronic Speed Control in Multilevel Inverter
18
作者 S.Dinesh Kumar A.Jagadeeshwaran 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2201-2215,共15页
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c... Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles. 展开更多
关键词 Surface-mounted permanent magnet synchronous motor sensorless speed control multilevel inverter torque estimation multi carrier pulse width modulation
下载PDF
Parameter Design of Current Double Closed Loop for T-Type Three-Level Grid-Connected Inverter
19
作者 Tiankui Sun Mingming Shi +3 位作者 Xiaolong Xiao Ping He Yu Ji Zhiyuan Yuan 《Energy Engineering》 EI 2023年第7期1621-1636,共16页
To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control a... To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control and the failure to eliminate the influence of the LCL filter on the grid-connected current by using current PI control alone,a current double closed loop PI current tracking control is proposed.Through the theoretical analysis of the grid-connected inverter control principle,the grid-connected inverter control model is designed,and the transfer functionmodel of each control link is deduced,and the current loop PI regulator is designed at last.The simulation results show that the control strategy is feasible. 展开更多
关键词 T-type inverter active damping current double closed loop
下载PDF
Simulation Study of the Control Strategy of a DC Inverter Heat Pump Using a DC Distribution Network
20
作者 Siwei Han Xianglong Li +3 位作者 Wei Zhao Linyu Wang Anqi Liang Shuang Zeng 《Energy Engineering》 EI 2023年第6期1421-1444,共24页
Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public... Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage. 展开更多
关键词 Photovoltaics energy storage direct current and flexibility DC inverter heat pump MATLAB&Simulink control strategy
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部