The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin...The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.展开更多
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala...Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy ...A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.展开更多
This paper proposes a cascade repetitive control strategy based on odd internal mode,and combines it with proportional-integral(PI)control to establish a compound repetitive control system for improving the quality of...This paper proposes a cascade repetitive control strategy based on odd internal mode,and combines it with proportional-integral(PI)control to establish a compound repetitive control system for improving the quality of grid connected current of LCL grid connected inverter.More specifically,the proposed method could effectively improve the control effect of grid-connected current of LCL inverter,restrain current harmonics and reduce the distortion rate of grid-connected current.Simulation experiment is conducted to verify the proposed repetitive control strategy,and the verification results show that,compared with traditional PI control,the proposed improved compound repetitive control strategy has a higher response speed,and the steady-state and dynamic performance have also been significantly improved.展开更多
This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elim...This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.展开更多
Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmoni...Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c...Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.展开更多
Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public...Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.展开更多
A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI imple...A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 11...The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.展开更多
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie...In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.展开更多
Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. Ho...Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.展开更多
A novel electric vehicle (EV) induction motor (IM) controller based on voltage-fed inverter is presented. It is shown that the proposed adaptive control algorithm effectively both simplifies the structure and expands ...A novel electric vehicle (EV) induction motor (IM) controller based on voltage-fed inverter is presented. It is shown that the proposed adaptive control algorithm effectively both simplifies the structure and expands the capacity of controller. The relationship between stator's voltage and that of current under rotor's flux-oriented-coordinates is first introduced, and then the structure of vector control is analyzed, in which voltage compensation is inducted as the core feedback procedure. Experiments prove that, together with a facility for realization, a smooth transition, a prompt torque response and small concussion are gained. Extensive research conducted by varying parameters that result in practical ripple is proposed in conclusion.展开更多
This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and...This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them,respectively.The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback.It is shown that the designed-synthesis controller properly damps resonant oscillations,and its performance is robust to the control-loop time delay and parameter uncertainties.The stability of a droop-controlled islanded microgrid including multiple distributed generation(DG)units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra.It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads,while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances.The robust performance of the designed-synthesis controller is studied analytically,compared with the similar analysis in an control(benchmark)framework,and verified by simulations for a four DG benchmark microgrid.Furthermore,the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevi...This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevitably inserted between the turn off and turn on instants of power devices to avoid short circuit phenomenon.The influence of dead-time leads to output voltage vector error of three-phase inverters.Furthermore,it will result in computing deviation in cost function,and will deteriorate the performance of the system if not properly dealt with.In this paper,the problem is clearly analyzed,and the solution to this issue is proposed by introducing a synthesized voltage vector.The proposed solution is verified by Hardware-in-the-loop(HiL)test in real time,and results validate the effectiveness of the proposed solution.展开更多
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project under Grant No.5400-202122573A-0-5-SF。
文摘The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.
文摘Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金This work was supported by the National Natural Science Foundation of China (No. 50007004)
文摘A novel repetitive control strategy for the output waveform of single-phase CVCF inverters is presented. In this scheme, the inverse transfer function of inverter is used as a compensator to obtain stable and satisfy harmonic rejection. Besides, PD controller is adopted to improve transient performance. Simulation and experimental results, which are gotten from a DSP-based 400Hz, 5.5KW inverter, indicate that the proposed control scheme can achieve not only low THD during steady-state operation but also fast transient response during load step change.
基金supported by the National Natural Science Foundation of China(No.61903291)。
文摘This paper proposes a cascade repetitive control strategy based on odd internal mode,and combines it with proportional-integral(PI)control to establish a compound repetitive control system for improving the quality of grid connected current of LCL grid connected inverter.More specifically,the proposed method could effectively improve the control effect of grid-connected current of LCL inverter,restrain current harmonics and reduce the distortion rate of grid-connected current.Simulation experiment is conducted to verify the proposed repetitive control strategy,and the verification results show that,compared with traditional PI control,the proposed improved compound repetitive control strategy has a higher response speed,and the steady-state and dynamic performance have also been significantly improved.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘This paper presents a novel approach that simultaneously enables photovoltaic(PV)inversion and flexible arc suppression during single-phase grounding faults.Inverters compensate for ground currents through an arc-elimination function,while outputting a PV direct current(DC)power supply.This method effectively reduces the residual grounding current.To reduce the dependence of the arc-suppression performance on accurate compensation current-injection models,an adaptive fuzzy neural network imitating a sliding mode controller was designed.An online adaptive adjustment law for network parameters was developed,based on the Lyapunov stability theorem,to improve the robustness of the inverter to fault and connection locations.Furthermore,a new arc-suppression control exit strategy is proposed to allow a zerosequence voltage amplitude to quickly and smoothly track a target value by controlling the nonlinear decrease in current and reducing the regulation time.Simulation results showed that the proposed method can effectively achieve fast arc suppression and reduce the fault impact current in single-phase grounding faults.Compared to other methods,the proposed method can generate a lower residual grounding current and maintain good arc-suppression performance under different transition resistances and fault locations.
基金funded by the Xi’an Science and Technology Plan Project,Grant No.2020KJRC001the Xi’an Science and Technology Plan Project,Grant No.21XJZZ0003。
文摘Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.
基金funded by State Grid Science&Technology Project“Research and Demonstration of Key Technologies on Electric-Heating Collaboration Cross-Network Mutual Supply for Typical Regional Clean Energy”,Grant Number 5400-202111575A-0-5-SF.
文摘Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.
文摘A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
文摘The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.
基金supported by the Third Level of Hangzhou 131 Young Talent Cultivation Plan Funding2018 Soft Science Research Project of Zhejiang Provincial Science and Technology Department Zhejiang Province Construction and participate in the“The Belt and Road”Technology Innovation Community Path Research(2018C35029)
文摘In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.
文摘Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.
文摘A novel electric vehicle (EV) induction motor (IM) controller based on voltage-fed inverter is presented. It is shown that the proposed adaptive control algorithm effectively both simplifies the structure and expands the capacity of controller. The relationship between stator's voltage and that of current under rotor's flux-oriented-coordinates is first introduced, and then the structure of vector control is analyzed, in which voltage compensation is inducted as the core feedback procedure. Experiments prove that, together with a facility for realization, a smooth transition, a prompt torque response and small concussion are gained. Extensive research conducted by varying parameters that result in practical ripple is proposed in conclusion.
文摘This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them,respectively.The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback.It is shown that the designed-synthesis controller properly damps resonant oscillations,and its performance is robust to the control-loop time delay and parameter uncertainties.The stability of a droop-controlled islanded microgrid including multiple distributed generation(DG)units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra.It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads,while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances.The robust performance of the designed-synthesis controller is studied analytically,compared with the similar analysis in an control(benchmark)framework,and verified by simulations for a four DG benchmark microgrid.Furthermore,the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
文摘This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevitably inserted between the turn off and turn on instants of power devices to avoid short circuit phenomenon.The influence of dead-time leads to output voltage vector error of three-phase inverters.Furthermore,it will result in computing deviation in cost function,and will deteriorate the performance of the system if not properly dealt with.In this paper,the problem is clearly analyzed,and the solution to this issue is proposed by introducing a synthesized voltage vector.The proposed solution is verified by Hardware-in-the-loop(HiL)test in real time,and results validate the effectiveness of the proposed solution.