Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where...Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where L is an incline with 0 and 1. Also it is proved that L is an integral incline if and only if GLn(L) = PLn (L) for any n (n 〉 2), in which GLn(L) is the group of all n × n invertible matrices over L and PLn(L) is the group of all n × n permutation matrices over L. These results should be regarded as the generalizations and developments of the previous results on the invertible matrices over a distributive lattice.展开更多
基金National Natural Science Foundation of China (60174013) Research Foundation for Doctoral Program of Higher Education (20020027013)+1 种基金 Science and Technology Key Project Foundation of Ministry of Education (03184) Major State Basic Research Development Program of China (2002CB312200)
文摘Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where L is an incline with 0 and 1. Also it is proved that L is an integral incline if and only if GLn(L) = PLn (L) for any n (n 〉 2), in which GLn(L) is the group of all n × n invertible matrices over L and PLn(L) is the group of all n × n permutation matrices over L. These results should be regarded as the generalizations and developments of the previous results on the invertible matrices over a distributive lattice.