期刊文献+
共找到157篇文章
< 1 2 8 >
每页显示 20 50 100
Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography 被引量:29
1
作者 Xinlei Sun Xiaodong Song +2 位作者 Sihua Zheng Yingjie Yang Michael H. Ritzwoller 《Earthquake Science》 CSCD 2010年第5期449-463,共15页
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin... We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust. 展开更多
关键词 ambient noise surface wave TOMOGRAPHY crust and upper mantle China
下载PDF
Surface wave tomography of the crust and upper mantle of Chinese mainland and its neighboring region 被引量:5
2
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第6期634-641,共8页
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas... The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths. 展开更多
关键词 Rayleigh wave seismic tomography the Chinese mainland crust and upper mantle velocity structure
下载PDF
Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity 被引量:5
3
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第3期269-275,共7页
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ... Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period. 展开更多
关键词 Rayleigh wave group velocity distribution crust and upper mantle velocity structure
下载PDF
Velocity structure of the crust and upper mantle in Xingtai earthquake region and its adjacent area
4
作者 祝治平 张称康 +5 位作者 盖玉杰 张建狮 聂文英 石金虎 张成科 阮红 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期405-412,共8页
Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuate... Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well. 展开更多
关键词 velocity structure lower crust upper crust upper mantle REFRACTION
下载PDF
3-D seismic tomography for velocity and interface structure of the crust and upper mantle(theoreticalpart)
5
作者 郑需要 张先康 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第5期32-40,共9页
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig... A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated. 展开更多
关键词 model parameterization ray tracing 3-D inversion crust and upper mantle structure
下载PDF
Structure of the Crust and Upper Mantle Beneath the Zhangbei-Shangyi Earthquake Area and Its Surroundings
6
作者 Zhao Guoze, Zhan Yan, Liu Guodong, Jiang Zhao, Liu Tiesheng, Tang Ji, Wang Jijun, Li Wenjun, and Liang JinggeInstitute of Geology, CSB, Beijing 100029, China 《Earthquake Research in China》 1999年第1期15-26,共12页
The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both ... The study of deep-seated structure in the Zhangbei-Shangyi earthquake area and its surroundings indicates that in comparison with the Shanxi rift system, the North China rifted basin, the Yanshanian fold belt on both sides, and the Zhangjiakou-Penglai tectonic belt have lower resistivity, and a distinctly different velocity interface in the crust and depth distribution of Moho discontinuity. The Yanqing- Huai’lai basin bisects the Zhangjiakou-Penglai tectonic belt into two segments, the northwestern and the southeastern segments. The latest magnetotelluric sounding and investigation indicate that the electrical structure within the Zhangbei-Shangyi earthquake area is different to a certain degree from that in its surroundings. There exists a nearly NNW-trending structure in the crust. The main shock and most aftershocks occurred above the low-resistivity zone in the crust. 展开更多
关键词 crust upper mantle Magnctotelluric SOUNDING Zhangjiakou-Penglai TECTONIC belt Zhangbei-Shangyi earthquake.
下载PDF
The role of fluids in the lower crust and upper mantle:A tribute to Jacques Touret
7
作者 Daniel Harlov 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第5期621-625,共5页
This special issue of Geoscience Frontiers is a tribute volume honoring the life and career of Jacques Touret. A set of research papers has been assembled, which broadly reflect his research interests over his 50 plus... This special issue of Geoscience Frontiers is a tribute volume honoring the life and career of Jacques Touret. A set of research papers has been assembled, which broadly reflect his research interests over his 50 plus year career. These papers Focus on the role that fluids play during the Formation and evolution of the Earth's crust. Below I provide a brief summary of the life of Jacques Touret, along with a select bibliography of his more important papers. This is then followed by a brief introduction to the papers assembled for this special issue. 展开更多
关键词 the role of fluids in the lower crust and upper mantle
下载PDF
Crust-mantle structure feature and the seismic activity of the main tectonic units in the North Tanlu fault zone 被引量:2
8
作者 牛雪 卢造勋 +2 位作者 姜德录 雷清清 石盛昌 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期159-165,共7页
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o... Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif. 展开更多
关键词 North Tanlu fsult zone crust-upper mantle structure low velocity-high conductivity layer seismicity
下载PDF
Regarding an Oceanic Crust/Upper Mantle Geochemical Signature at the KT Boundary:If not from Chicxulub Crater,then Where Did it Come from?
9
作者 Peter OLDS Norm SLEEP 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期28-29,共2页
Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont... Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).This evidence,along with ejected terrestrial chromites(Olds et al.,2016)suggest the impact sampled terrestrial mafic and/or ultramafic target rocks which are not known to exist in the Chicxulub target area.Possible resolutions to the paradox are:1)the existence of an unmapped/unknown suture in Yucatan Platform basement,2)an additional small unmapped/unknown impact site on oceanic lithosphere,or 3)an additional large impact on oceanic lithosphere or continental margin transitional to oceanic lithosphere.The third hypothesis is elaborated here since:1)Ophiolites nearest to Chicxulub crater are found in Cuba and apparently were obducted in latest Cretaceous/earliest Danian times(García-Casco,2008),inconsistent with the documented Eocene collision of Cuba with the Bahamas platform;and 2)Cuba hosts the world’s thickest known KT boundary deposits(Iturralde-Vinent,1992;Kiyokawa et al.,2002;Tada et al.,2003).These and geometric considerations suggest oceanic crust and upper mantle rock,exposed as ophiolite in the Greater Antilles island chain,marks the rim of a roughly 700 km diameter impact basin deformed and dismembered from an originally circular form by at least 50 million years of left-lateral shear displacement along the North American-Caribbeantransform plate boundary. 展开更多
关键词 then Where Did it Come from If not from Chicxulub Crater Regarding an Oceanic crust/upper mantle Geochemical Signature at the KT Boundary KT
下载PDF
Sulphide melt evolution in upper mantle to upper crust magmas,Tongling, China 被引量:1
10
作者 Yilun Du Xinlong Qin +3 位作者 Calvin G.Barnes Yi Cao Qian Dong Yangsong Du 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期237-248,共12页
Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the format... Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits. 展开更多
关键词 Ore petrology Intermediate-acidic intrusion Lower Yangtze River Valley Sulfide inclusions upper mantle to upper crust
下载PDF
The Crust-Mantle Structure in Zhangbei-Shangyi Earthquake Area 被引量:2
11
作者 Zhu Zhiping, Zhang Jianshi, Zhang Xiankang, Zhang Chengke, Liu Mingqing, and Nie WenyingResearch Center of Exploration Geophysics, CSB, Zhengzhou 450002, China 《Earthquake Research in China》 1999年第4期59-68,共10页
The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The ne... The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake. 展开更多
关键词 Zhangbei and ADJACENT area crust-upper mantle velocity structure deep crustAL fault wide angle reflection and refraction.
下载PDF
Study and review on crust-mantle velocity structure in Bohai Bay and its vicinity
12
作者 张成科 张先康 +3 位作者 赵金仁 任青芳 张建狮 海燕 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期447-455,共9页
Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogra... Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones. 展开更多
关键词 deep seismic sounding crust and upper mantle velocity structure seismic interfaces
下载PDF
Three-dimensional thermal structure of the Chinese continental crust and upper mantle 被引量:21
13
作者 AN MeiJian1,2? & SHI YaoLin1 1 Laboratory of Computational Geodynamics, Graduate University of Chinese Academy of Sciences, Beijing 100049, China 2 Key Laboratory of Crust Deformation and Processes and Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China 《Science China Earth Sciences》 SCIE EI CAS 2007年第10期1441-1451,共11页
We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300℃ adiabat is corresponding to the top of the seismic low velocity zone. The temperatures dow... We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300℃ adiabat is corresponding to the top of the seismic low velocity zone. The temperatures down to the depth of 80 km are then calculated by solving steady-state thermal conduction equation with the constraints of the inverted upper-mantle temperatures and the surface temperatures, and then surface heat flows are calculated from the crustal temperatures. The misfit between the calculated and observed surface heat flow is smaller than 20% for most regions. The result shows that, at a depth of 25 km, the crustal temperature of eastern China (500―600℃) is higher than that of western China (<500℃). At a depth of 100 km, temperatures beneath eastern and southeastern China are higher than the adiabatic temperature of 1300℃, while that beneath west China is lower. The Tarim craton and the Sichuan basin show generally low temperature. At a depth of 150 km, temperatures beneath south China, eastern Yangtze craton, North China craton and around the Qiangtang terrane are higher than the adiabatic temperature of 1300℃, but is the lowest beneath the Sichuan basin and the regions near the Indian-Eurasian collision zone. At a depth of 200 km, very low temperature occurs beneath the Qinghai-Tibet Plateau and the south to the Tarim craton. 展开更多
关键词 crust upper mantle temperature SEISMIC velocity China
原文传递
Crust and upper mantle structure of the Ailao Shan-Red River fault zone and adjacent regions 被引量:18
14
作者 XU Yi LIU Jianhua LIU Futian SONG Haibin HAO Tianyao JIANG Weiwei 《Science China Earth Sciences》 SCIE EI CAS 2005年第2期156-164,共9页
Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern contin... Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the east of the fault zone shows a relatively stable structure similar to the Yangtze block. The low velocities of the deep mantle beneath the southeastern extending segment of the fault zone are probably related to the mantle convection produced by the pull-apart of the South China Sea. 展开更多
关键词 AILAO Shan-Red River fault zone seismic tomography crust and upper mantle velocity structure.
原文传递
Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt 被引量:16
15
作者 LI Yu LIU QiYuan +3 位作者 CHEN JiuHui LI ShunCheng GUO Biao LAI YuanGen 《Science China Earth Sciences》 SCIE EI CAS 2007年第3期321-330,共10页
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China... From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the splicing of adjacent blocks and the fast uplift of the Tianshan Mountains. 展开更多
关键词 nonlinear inversion receiver function S-WAVE velocity crust and upper mantle TIANSHAN OROGENIC BELT
原文传递
Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis 被引量:10
16
作者 XU Mingjie1, WANG Liangshu1, LIU Jianhua2, ZHONG Kai1, LI Hua1, HU Dezhao1 & XU Zhen1 1. Department of Earth Sciences, Nanjing University, Nanjing 210093, China 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第10期1043-1052,共10页
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs r... S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle. 展开更多
关键词 RECEIVER function Ailaoshan-Red River fault velocity structure Poisson's ratio crust and upper mantle.
原文传递
Seismic tomography of the crust and upper mantle in the Bohai Bay Basin and its adjacent regions 被引量:8
17
作者 ZHANG Ling LIU JinSong HAO TianYao LIU JianHua XU Yi 《Science China Earth Sciences》 SCIE EI CAS 2007年第12期1810-1822,共13页
In the Bohai Bay Basin and its adjacent regions(112°―124°E,34°―42°N),there exists abundant gas-petroleum while modern inter-plate seismic activity is robust.Although the tectonic structure of thi... In the Bohai Bay Basin and its adjacent regions(112°―124°E,34°―42°N),there exists abundant gas-petroleum while modern inter-plate seismic activity is robust.Although the tectonic structure of this region is very complicated,plenty of geological,geophysical and geochemical data and results are obtained through previous researches.On the basis of absorbing previous results,especially various kinds of geological and geophysical results,we collect and process the arrival time of P-wave phases of local events and tele-seismic events recorded by the station within this region from 1978 to 2004,build the responding initial model,and image the velocity structure of the crust and upper mantle of this region via tomography.The perturbation images of various depths and velocity profiles imply that the velocity structure of the crust and upper mantle in the Bohai Bay Basin and its adjacent regions is mainly influenced by the surface tectonic units,and is characterized by "Stripped along east-west,and zoned along south-north";some large-scaled faults penetrate Moho and lithosphere,and provide the channels for the basic lava or hot mass upwelling from the mantle. 展开更多
关键词 Bohai BAY Basin tomography crust and upper mantle
原文传递
Structures of the Bohai Petroliferous Area,Bohai Bay Basin 被引量:8
18
作者 CAI Dongsheng LUO Yuhui +4 位作者 YAO Changhua HE Jiankun HU Shengbiao LU Huafu WANG Liangshu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期641-650,共10页
This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexi... This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin. 展开更多
关键词 basin structure rifting cycle thermal history seismic tomographic image crust and upper mantle architecture Bohai Bay basin
下载PDF
Crustal structure beneath Beijing and its surrounding regions derived from gravity data 被引量:2
19
作者 Wenliang Jiang Jingfa Zhang +1 位作者 Xiaocui Lu Jing Lu 《Earthquake Science》 CSCD 2011年第3期299-310,共12页
In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. L... In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake (Ms8.0) and Tangshan earthquake (Ms7.8). 展开更多
关键词 Beijing area fine structure crust and upper mantle Bouguer gravity anomaly wavelet multi-scale analysis
下载PDF
Rayleigh Wave Tomography of Ningxia and Its Adjacent Areas Based on Ambient Noise
20
作者 Xie Hui Ma Heqing +3 位作者 Ma Xiaojun Li Qingmei Zhang Nan Ren Jiaqi 《Earthquake Research in China》 CSCD 2016年第4期542-555,共14页
In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wa... In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wave group velocity dispersion images in the study area( 101°- 112°E,31°-42°N) according to the method of noise imaging,with period between 6s - 50s and resolution of 0.5°. The Yinchuan basin in the 6s - 26 s period obviously shows a low velocity anomaly,which is not uniform and has a tendency to gradually weaken; the Guanzhong Basin in 6 s-22s shows a strip of low velocity anomaly and demonstrates a transverse inhomogeneity,where velocity in the southeast is slightly faster than that in the northwest. In the 30s - 50s period it shows that in the Yinchuan graben basin and its southern area,there is a large low velocity anomaly area,which moves from northeast to southwest. It shows that between the main active tectonic zones,like mountains and basins,there are obvious geomorphologic boundaries. For example,the deep fault near Liupan Mountain is the dividing line between two large tectonic units of eastern and western of China. The inversion results have good correlation with the geological structure and the stratigraphic landform. The results are consistent with the results of artificial seismic section tomography across the basin. It provides an important basis for the dynamics of active tectonic zones and the mechanism of earthquake occurrence in this area. 展开更多
关键词 层析成像 环境噪声 宁夏 瑞利波 群速度色散 横向不均匀 活动构造带 银川盆地
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部