期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Xinjining(心悸宁) Extract on Inward Rectifier Potassium Current in Ventricular Myocytes of Guinea Pig
1
作者 朱明军 王国娟 +3 位作者 王永霞 浦介麟 刘红军 余海滨 《Chinese Journal of Integrative Medicine》 SCIE CAS 2010年第1期61-65,共5页
Objective: To study the effect of Xinjining extract (心悸宁, XJN) on inward rectifier potassium current (IKI) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. ... Objective: To study the effect of Xinjining extract (心悸宁, XJN) on inward rectifier potassium current (IKI) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. Methods: Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the Ikl in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of IK1 as well as the outward component of peak IK1 and conductance of it accordingly was recorded when the test voltage was set on -110 mV. Results: The suppressive rate of XJN on the inward component of IK1 was 9.54% ± 5.81%, 34.82% ± 15.03%, and 59.52% ± 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak IK1 was 23.94%± 7.45%, 52.98%± 19.62%, and 71.42% ± 23.01%, respectively (all P〈0.05). Moreover, different concentrations of XJN also showed effects for reducing IK1 conductance. Conclusion: XJN has inhibitory effect on IK1in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect. 展开更多
关键词 Xinjining extract cardiac arrhythmia inward rectifier potassium current
原文传递
Mechanisms underlying the beneficial effects of Kaiyu Granule for depression 被引量:3
2
作者 Xi Jin Yidan Zhang +1 位作者 Qiaoying Li Jianjun Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3241-3248,共8页
The proprietary Chinese medicine preparation Kaiyu Granule is made of bupleurum, nutgrass ga- lingale rhizome, szechwan Iovage rhizome, turmeric root tuber, white peony alba, cape jasmine fruit fried semen ziziphi juj... The proprietary Chinese medicine preparation Kaiyu Granule is made of bupleurum, nutgrass ga- lingale rhizome, szechwan Iovage rhizome, turmeric root tuber, white peony alba, cape jasmine fruit fried semen ziziphi jujubae, and prepared liquorice root. It is a common recipe for the clinical treatment of depression in China. In this study, after 21 days of unpredictable stress exposure, Wistar rats exhibited similar behavioral changes to patients with depression. Moreover, G-protein-coupled inwardly rectifying K+ channel 1 mRNA and protein expression were significantly reduced in rat hippocampal CA1 and CA3 regions. However, G-protein-coupled inwardly rectifying K+ channel 1 mRNA, protein expression, and rat behavior were clearly better after administration of 12, 8, or 4 g/kg of Kaiyu Granule when depression model rats underwent stress. 12 g/kg of Kaiyu Granule had the most obvious effects on the increased expression of G-protein-coupled inwardly rectifying K+ channel 1 mRNA and protein in rat hippocampal CA1 and CA3 regions. These results suggested that Kaiyu Granule improved depression by affecting G-protein-coupled inwardly recti- fying K+ channel 1 expression in the rat hippocampus. 展开更多
关键词 neural regeneration chronic stress hippocampus fluoxetine hydrochloride capsules DEPRESSION NEUROPEPTIDE G-protein-coupled inwardly rectifying K~ channel 1" in situ hybridization grants-supported paper NEUROREGENERATION
下载PDF
EFFECTS OF GLIBENCLAMIDE, GLIMEPIRIDE, AND GLICLAZIDE ON ISCHEMIC PRECONDITIONING IN RAT HEART 被引量:3
3
作者 Guo-ting Wu Lin Wang +1 位作者 Jun Li Wei-zhong Zhu 《Chinese Medical Sciences Journal》 CAS CSCD 2007年第3期162-168,共7页
Objective To compare the influence of different sulfonylureas on the myocardial protection effect of ischemic preconditioning (IPC) in isolated rat hearts, and ATP-sensitive potassium channel current (IKATP) of rat ve... Objective To compare the influence of different sulfonylureas on the myocardial protection effect of ischemic preconditioning (IPC) in isolated rat hearts, and ATP-sensitive potassium channel current (IKATP) of rat ventricular myocytes. Methods Isolated Langendorff perfused rat hearts were randomly assigned to five groups: (1) control group, (2) IPC group, (3) IPC+glibenclamide (GLB, 10 μmol/L) group, (4) IPC+glimepiride (GLM, 10 μmol/L) group, (5) IPC+gliclazide (GLC, 50 μmol/L) group. IPC was defined as 3 cycles of 5-minute zero-flow global ischemia followed by 5-minute reperfusion. The haemodynamic parameters and the infarct size of each isolated heart were recorded. And the sarcolemmal IKATP of dissociated ventricular myocytes reperfused with 10 μmol/L GLB, 1 μmol/L GLM, and 1 μmol/L GLC was recorded with single-pipette whole-cell voltage clamp under simulated ischemic condition. Results The infarct sizes of rat hearts in IPC (23.7%±1.3%), IPC+GLM (24.6%±1.0%), and IPC+GLC (33.1%±1.3%) groups were all significantly smaller than that in control group (43.3%±1.8%; P<0.01, n=6). The infarct size of rat hearts in IPC+GLB group (40.4%±1.4%) was significantly larger than that in IPC group (P<0.01, n=6). Under simulated ischemic condition, GLB (10 μmol/L) decreased IKATP from 20.65±7.80 to 9.09±0.10 pA/pF (P<0.01, n=6), GLM (1 μmol/L) did not significantly inhibit IKATP (n=6), and GLC (1 μmol/L) decreased IKATP from 16.73±0.97 to 11.18±3.56 pA/pF(P<0.05, n=6). Conclusions GLM has less effect on myocardial protection of IPC than GLB and GLC. Blockage of sarcolemmal ATP-sensitive potassium channels in myocardium might play an important role in diminishing IPC-induced protection of GLM, GLB, and GLC. 展开更多
关键词 myocardial ischemic preconditioning sulfonylurea compounds inwardly rectifying potassium channels
下载PDF
The ionic mechanisms of long QT interval in diabetic rabbits
4
作者 Yan-Xiu Cao Xue-Lian Li +5 位作者 Xiu-Juan Ding Bing Wang Li Zhang Cui Li Bao-Feng Yang Hong-Li Shan 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2010年第1期31-35,共5页
Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabet... Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29). 展开更多
关键词 DIABETES QT prolongation slowly activating outward rectifying potassium current inward rectifying potassium current: L-tvoe calcium current: Patch clamo
下载PDF
Zacopride selectively activates the Kir2.1 channel via a PKA signaling pathway in rat cardiomyocytes 被引量:7
5
作者 ZHANG Li LIU QingHua +7 位作者 LIU ChengFang ZHAI XuWen FENG QiLong XU RuiLing CUI XiangLi ZHAO ZhiQing CAO JiMin WU BoWei 《Science China(Life Sciences)》 SCIE CAS 2013年第9期788-796,共9页
We recently reported that zacopride is a selective inward rectifier potassium current (IK1 ) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to invest... We recently reported that zacopride is a selective inward rectifier potassium current (IK1 ) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study IK1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at 50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT) 3 receptor was undetectable, whereas 5-HT 4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor. 展开更多
关键词 zacopride inward rectifier potassium channel 5-HT receptor protein kinase
原文传递
Distributed Differences Structures Underlie Gating between the Kin Channel KAT1 and the Kout Channel SKOR 被引量:2
6
作者 Janin Riedelsberger Tripti Sharma +7 位作者 Wendy Gonzalez Pawel Gajdanowicz Samuel Elias Morales-Navarro Carlos Garcia-Mata Bernd Mueller-Roeber Fernando Danilo Gonzalez-Nilo Michael R. Blatt Ingo Dreyer 《Molecular Plant》 SCIE CAS CSCD 2010年第1期236-245,共10页
The family of voltage-gated (Shaker-like) potassium channels in plants includes both inward-rectifying (Kin) channels that allow plant cells to accumulate K+ and outward-rectifying (Kout) channels that mediate ... The family of voltage-gated (Shaker-like) potassium channels in plants includes both inward-rectifying (Kin) channels that allow plant cells to accumulate K+ and outward-rectifying (Kout) channels that mediate K+ efflux. Despite their dose structural similarities, Kin and Kout channels differ in their gating sensitivity towards voltage and the extracellular K+ concentration. We have carried out a systematic program of domain swapping between the Kout channel SKOR and the Kin channel KAT1 to examine the impacts on gating of the pore regions, the S4, S5, and the S6 helices. We found that, in particular, the N-terminal part of the S5 played a critical role in KAT1 and SKOR gating. Our findings were supported by molecular dynamics of KAT1 and SKOR homology models. In silico analysis revealed that during channel opening and closing, displacement of certain residues, especially in the S5 and S6 segments, is more pronounced in KAT1 than in SKOR. From our analysis of the S4-S6 region, we conclude that gating (and K+-sensing in SKOR) depend on a number of structural elements that are dispersed over this -145-residue sequence and that these place additional constraints on configurational rearrangement of the channels during gating. 展开更多
关键词 ARABIDOPSIS K+ channel outward rectifier inward rectifier channel protein structure channel protein-cation interaction gating K+-dependent.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部