Failure of the zirconium alloy claddings due to iodine-induced stress corrosion cracking(I-SCC)will increase the risk of fission product leakage.The progress of I-SCC has been comprehensively investigated in a massive...Failure of the zirconium alloy claddings due to iodine-induced stress corrosion cracking(I-SCC)will increase the risk of fission product leakage.The progress of I-SCC has been comprehensively investigated in a massive amount of published literature.For a comprehensive understanding of I-SCC,this review focuses on summarizing the mechanisms and influencing factors of I-SCC.Results show that micropits are formed on the surface of zirconium alloys due to the reaction between iodine and zirconium,and then small pits gradually gather to form pit clusters.Cracks are easily generated in pit clusters and propagate along the grain boundary.After reaching a particular condition,the crack will transform into transgranular direction propagation.As the crack develops,it finally becomes a ductile fracture.We also summarize various factors that may affect I-SCC.The specific cracking conditions are linked to elements,such as iodine concentration,temperature,microstructure,and alloying elements.Nonetheless,the improvement of the I-SCC resistance of zirconium alloys needs to be further explored.More attention can be paid to material properties,such as alloying elements,microstructure,and surface treatment,to improve the I-SCC resistance of zirconium alloys.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.How...Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.However,the chemical stability of Mg alloys is poor,especially in the corrosive medium environment with high stress corrosion sensitivity,which causes sudden damage to structural components and restricts their application field.In recent years,owing to the increasing failure rate of engineering structures caused by stress corrosion of Mg alloys,it has become necessary to understand and pay more attention to the stress corrosion cracking(SCC)behavior of Mg alloys.In this paper,the SCC mechanisms and test methods of Mg alloys have been summarized.The recent research progress on SCC of Mg alloys has been reviewed from the aspects of alloying,preparation process,surface modification,corrosive medium,and strain rate.More importantly,future research trends in the field of SCC of Mg alloys have also been proposed.展开更多
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele...The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.展开更多
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t...Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.展开更多
Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of ...Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments,and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution(AD),the hydrogen-induced cracking(HIC),and the combined AD and HIC mechanisms.The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking.The effects of stress ratio,loading frequency,and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized.The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments,which contain sulfide,chlorides,and carbonate,are analyzed.The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments.The current research methods for centrifugal compressor impeller corrosion failure are analyzed.Physical analysis,numerical simulation,and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.展开更多
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in...Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.展开更多
310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode...310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode for 310S stainless steel. Past researched about SCC of 310S primarily focus on the corrosion mechanism and influence of temperature and corrosive media, but few studies concern the combined influence of temperature, pressure and chloride. on SCC of 310S stainless steel, prepared samples are investigated via For a better understanding of temperature and pressure's effects slow strain rate tensile test(SSRT) in different temperature and pressure in NACE A solution. The result shows that the SCC sensibility indexes of 310S stainless steel increase with the rise of temperature and reach maximum at 10MPa and 160~C, increasing by 22.3% compared with that at 10 MPa and 80 ℃. Instead, the sensibility decreases with the pressure up. Besides, the fractures begin to transform from the ductile fracture to the brittle fracture with the increase of temperature. 310S stainless steel has an obvious tendency of stress corrosion at 10MPa and 160℃ and the fracture surface exists cleavage steps, river patterns and some local secondary cracks, having obvious brittle fracture characteristics. The SCC cracks initiate from inclusions and tiny pits in the matrix and propagate into the matrix along the cross section gradually until rupture. In particular, the oxygen and chloride play an important role on the SCC of 310S stainless steel in NACE A solution. The chloride damages passivating film, causing pitting corrosion, concentrating in the cracks and accelerated SSC ultimately. The research reveals the combined influence of temperature, pressure and chloride on the SCC of 310S, which can be a guide to the application of 310S stainless steel in super-heater tube.展开更多
The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (S...The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.展开更多
Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx...Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.展开更多
Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensi...Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.展开更多
The environment-sensitive fracture behaviour of 0Cr18Ni9Ti austenitic stainless steel in boiling 42% MgCl_2 under the specific load of low frequency and high mean stress was inves- tigated from the relations and diffe...The environment-sensitive fracture behaviour of 0Cr18Ni9Ti austenitic stainless steel in boiling 42% MgCl_2 under the specific load of low frequency and high mean stress was inves- tigated from the relations and differences of crack growth rates and fractographs between stress corrosion fatigue and stress corrosion cracking.The interaction between stress corro- sion cracking and corrosion fatigue was also studied from fracture characteristics with empha- sis on the effects of applied potential on the interaction.展开更多
The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and stren...The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.展开更多
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ...Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.展开更多
The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microsco...The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.展开更多
The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the ...The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.展开更多
In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and ...In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and slow strain rate test(SSRT), combined with optical microscopy(OM) and scanning electron microscopy(SEM) as well as transmission electron microscopy(TEM) observations have been carried out. The IGC and electrochemical test results showed that the IGC resistance of AA7003 for peak aged(PA) temper is the lowest, with double peak aged(DPA) the moderate, and retrogression and re-aging(RRA) the highest among three tempers, which is attributed to the continuous feature of precipitation on grain boundary of PA temper and the interrupted feature of precipitation on grain boundary of DPA and RRA tempers, as well as the wide precipitation free zones(PFZ) of RRA temper. In addition, the SSRT results indicated that all three tempers AA7003 are susceptible to SCC in IGC solution, and the change tendency of SCC susceptibility(ISCC) of AA7003 for three tempers follows the order: ISCC(RRA)展开更多
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation beh...5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.展开更多
基金supported by the National MCF Energy R&D Program(No.2019YFE03130002)the Research Program of Development Strategy of the Chinese Academy of Sciences(No.XK2019JSA001)。
文摘Failure of the zirconium alloy claddings due to iodine-induced stress corrosion cracking(I-SCC)will increase the risk of fission product leakage.The progress of I-SCC has been comprehensively investigated in a massive amount of published literature.For a comprehensive understanding of I-SCC,this review focuses on summarizing the mechanisms and influencing factors of I-SCC.Results show that micropits are formed on the surface of zirconium alloys due to the reaction between iodine and zirconium,and then small pits gradually gather to form pit clusters.Cracks are easily generated in pit clusters and propagate along the grain boundary.After reaching a particular condition,the crack will transform into transgranular direction propagation.As the crack develops,it finally becomes a ductile fracture.We also summarize various factors that may affect I-SCC.The specific cracking conditions are linked to elements,such as iodine concentration,temperature,microstructure,and alloying elements.Nonetheless,the improvement of the I-SCC resistance of zirconium alloys needs to be further explored.More attention can be paid to material properties,such as alloying elements,microstructure,and surface treatment,to improve the I-SCC resistance of zirconium alloys.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金supported by the National Natural Science Foundation of China(52071175)the Key Research&Development Plan(Social Development)of Jiangsu Province(BE2020702)。
文摘Magnesium(Mg)alloys have been widely used in automobile,aviation,computer,and other fields due to their lightweight,high specific strength and stiffness,low pollution,and good electromagnetic shielding performance.However,the chemical stability of Mg alloys is poor,especially in the corrosive medium environment with high stress corrosion sensitivity,which causes sudden damage to structural components and restricts their application field.In recent years,owing to the increasing failure rate of engineering structures caused by stress corrosion of Mg alloys,it has become necessary to understand and pay more attention to the stress corrosion cracking(SCC)behavior of Mg alloys.In this paper,the SCC mechanisms and test methods of Mg alloys have been summarized.The recent research progress on SCC of Mg alloys has been reviewed from the aspects of alloying,preparation process,surface modification,corrosive medium,and strain rate.More importantly,future research trends in the field of SCC of Mg alloys have also been proposed.
基金Projects(2010CB731701,2012CB619502)supported by the National Basic Research Program of ChinaProjects(51201186,51327902)supported by the National Natural Science Foundation of China
文摘The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.
基金Project(2012CB619505)supported by the National Basic Research Program of ChinaProject(NCET-13-0370)supported by the Program for New Century Excellent Talents in Universities of China
文摘Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB013401)Visiting Scholar Funded Project of China Scholarship Council(Grant No.201308370116)+2 种基金Technological Innovation Project of General Administration of Quality Supervision,Inspection and Quarantine of China(Grant No.2011QK235)Technological Innovation Project of Weihai Municipal ScienceTechnology Bureau of China(Grant No.2012DXGJ22)
文摘Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments,and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution(AD),the hydrogen-induced cracking(HIC),and the combined AD and HIC mechanisms.The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking.The effects of stress ratio,loading frequency,and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized.The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments,which contain sulfide,chlorides,and carbonate,are analyzed.The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments.The current research methods for centrifugal compressor impeller corrosion failure are analyzed.Physical analysis,numerical simulation,and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.
基金supported by the National Science & Technology Infrastructure Development Program of China(No.2005DKA10400)
文摘Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB013401)General Administration of Quality Supervision,Inspection and Quarantine of China(Grant No.2011QK235)
文摘310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode for 310S stainless steel. Past researched about SCC of 310S primarily focus on the corrosion mechanism and influence of temperature and corrosive media, but few studies concern the combined influence of temperature, pressure and chloride. on SCC of 310S stainless steel, prepared samples are investigated via For a better understanding of temperature and pressure's effects slow strain rate tensile test(SSRT) in different temperature and pressure in NACE A solution. The result shows that the SCC sensibility indexes of 310S stainless steel increase with the rise of temperature and reach maximum at 10MPa and 160~C, increasing by 22.3% compared with that at 10 MPa and 80 ℃. Instead, the sensibility decreases with the pressure up. Besides, the fractures begin to transform from the ductile fracture to the brittle fracture with the increase of temperature. 310S stainless steel has an obvious tendency of stress corrosion at 10MPa and 160℃ and the fracture surface exists cleavage steps, river patterns and some local secondary cracks, having obvious brittle fracture characteristics. The SCC cracks initiate from inclusions and tiny pits in the matrix and propagate into the matrix along the cross section gradually until rupture. In particular, the oxygen and chloride play an important role on the SCC of 310S stainless steel in NACE A solution. The chloride damages passivating film, causing pitting corrosion, concentrating in the cracks and accelerated SSC ultimately. The research reveals the combined influence of temperature, pressure and chloride on the SCC of 310S, which can be a guide to the application of 310S stainless steel in super-heater tube.
基金financially supported by the State Key Fundamental Research Program of China (No. 2005CB623706)
文摘The effects of pre-deformation and strain rate on the stress corrosion cracking (SCC) behavior of aluminum alloy 2519 in air and in 3.5% NaCI water solution were investigated by means of slow strain rate tension (SSRT), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the alloy is susceptible to SCC in 3.5% NaCI water solution and not in air. At the same pre-deformation, the alloy is more susceptible to SCC at 1.33 × 10^-5 s^-1 than at 6.66 × 10^-5 s^-1. Moreover, it is more susceptible to SCC at free pre-deformation than at 10% pre-deformation at the same strain rate. The number of 0 precipitated along the grain boundaries is reduced and distributed discontinuously, at the same time, the precipitate-free zones (PFZ) become narrow and the susceptibility to stress corrosion cracking is reduced after 10% pre-deformation.
文摘Stress corrosion cracking (SCC) is degradation of mechanical properties under the combined action of stress and corrosive environment of the susceptible material. Out of eight series of aluminium alloys, 2xxx, 5xxx and 7xxx aluminium alloys are susceptible to SCC. Among them, 7xxx series aluminium alloys have specific application in aerospace, military and structural industries due to superior mechanical properties. In these high strength 7xxx aluminium alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service. The understanding of SCC behaviour possesses critical challenge for this alloy. The main aim of this review paper is to understand the effect of constituent alloying elements on the response of microstructural variation in various heat-treated conditions on SCC behavior. Further, review was made for improving the SCC resistance using thermomechanical treatments and by surface modifications of 7xxx alloys. Apart from a brief review on SCC of 7xxx alloys, this paper presents the effect of stress and pre-strain, effect of constituent alloying elements in the alloy, and the effect of environments on SCC behaviour. In addition, the SCC behaviours of weldments, 7xxx metal matrix composites and also laser surface modifications were also reviewed.
文摘Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.
文摘The environment-sensitive fracture behaviour of 0Cr18Ni9Ti austenitic stainless steel in boiling 42% MgCl_2 under the specific load of low frequency and high mean stress was inves- tigated from the relations and differences of crack growth rates and fractographs between stress corrosion fatigue and stress corrosion cracking.The interaction between stress corro- sion cracking and corrosion fatigue was also studied from fracture characteristics with empha- sis on the effects of applied potential on the interaction.
文摘The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB605005)Shanghai Municipal Committee of Science and Technology of china(Grant No. 005207019,Grant No. 08520708000)
文摘Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.
基金financially supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20141292)the Foundation of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences (No. MCKF201412)
文摘The hydrogen permeation behavior and stress corrosion cracking (SCC) susceptibility of precharged 7075-T6 A1 alloy were inves- tigated in this paper. Devanthan-Stachurski (D-S) cell tests were used to measure the apparent hydrogen diffusivity and hydrogen permeation current density of specimens immersed in 3.5wt% NaCl solution. Electrochemical experiment results show that the SCC susceptibility is low during anodic polarization. Both corrosion pits and hydrogen-induced cracking are evident in scanning electron microscope images after the specimens have been charging for 24 h.
基金Funded by the National Natural Science Foundation of China(No.51371039)
文摘In order to study the effects of aging treatment on the intergranular corrosion(IGC) and stress corrosion cracking(SCC) of 7003 aluminum alloy(AA7003), the intergranular corrosion test, electrochemical test and slow strain rate test(SSRT), combined with optical microscopy(OM) and scanning electron microscopy(SEM) as well as transmission electron microscopy(TEM) observations have been carried out. The IGC and electrochemical test results showed that the IGC resistance of AA7003 for peak aged(PA) temper is the lowest, with double peak aged(DPA) the moderate, and retrogression and re-aging(RRA) the highest among three tempers, which is attributed to the continuous feature of precipitation on grain boundary of PA temper and the interrupted feature of precipitation on grain boundary of DPA and RRA tempers, as well as the wide precipitation free zones(PFZ) of RRA temper. In addition, the SSRT results indicated that all three tempers AA7003 are susceptible to SCC in IGC solution, and the change tendency of SCC susceptibility(ISCC) of AA7003 for three tempers follows the order: ISCC(RRA)
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
基金financial support and Program of the Ministry of Education in China (2011)。
文摘5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.