Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6...Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.展开更多
The feasibility of recavering glutamic acid by ion exchange method with macroporous resins was investigated. Their adsorption properties in static state and the effective factors,such as pH, concentration of feed and ...The feasibility of recavering glutamic acid by ion exchange method with macroporous resins was investigated. Their adsorption properties in static state and the effective factors,such as pH, concentration of feed and the ratio of ammonium ion toglutamic acid,were systematically explored. The best conditions of separating glutamic acid from mother liquid were obtained.展开更多
In this paper, a new complex inorganic ion exchanger Titanium Phosphate - Ammonium Tungstophosphate (abbreviated as TiP - AWP) was synthesized, whose exchange character and chemical structure were studied, Thiscompoun...In this paper, a new complex inorganic ion exchanger Titanium Phosphate - Ammonium Tungstophosphate (abbreviated as TiP - AWP) was synthesized, whose exchange character and chemical structure were studied, Thiscompound exhibits high exchange capacity and selectivity for Cs+, its exchangecapacity attains 0. 95 mmol/g in the medium of 0. 1 mol/L HNO3, andwhich almost doesn’ t change in the 1 AW imitated waste solution. There areno change in exchange capacity and structure after several times of exchanging,eluting, regenerating, which is of great importance to the separation and uptaking of radio - nuclides. Further more, this exchanger has good thermal andradioactive stability.展开更多
According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM wel...According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.展开更多
Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is fou...Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is found that both records are very similar from 72 K a B.P. to the present, especially for the benthic oxygen isotope record. The linear regression shows that δ18O changes (0.9995‰ for benthic foraminifers and 1.022‰ for planktonic foraminifers) are equal to 100 m in sea-level fluctuation. After making temperature correction in the δ18O record of benthic foraminifers from 72 to 120 Ka B.P., the curve of sea-level oscillation of the South China Sea since 186 Ka B.P. has been reconstructed. The lowermost sea - level that occurred in the last glacial maximum and oxygen isotope stage 6 is approximately - 130 m.展开更多
The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number o...The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.展开更多
The response of yeast to sharp environmental increases in calcium concentration has been extensively studied. However, systematic studies of the response under more general changes are still lacking. Only limited expl...The response of yeast to sharp environmental increases in calcium concentration has been extensively studied. However, systematic studies of the response under more general changes are still lacking. Only limited exploration of cellular responses has been conducted where calcium concentration is decreased. This article describes a set of luminometric experiments that monitor the cytosolic calcium concentration under changing external concentration conditions. As a decrease in external calcium concentrations requires the use of large sample volumes, the experiments require the use of equipment adapted for this purpose. We describe the modification of commercial luminometric equipment to make the exploration possible. We explore the yeast cellular behavior when an increase in external calcium concentration is followed by a decrease in external calcium concentration. We compare these results with those from the case of a double pulse of concentration increase. Results from the experiment show that the first, concentration increasing pulse produces the well-known sharp increase in cytosolic calcium followed by calcium sequestration to return to a cytosolic concentration near its initial condition. Surprisingly, the calcium decrease step shows similar results with a cytosolic increase followed by a return to lower levels. The results suggest the presence of a calcium sensing mechanism regulating calcium influx from external sources. This mechanism would produce channel opening as a response to any changes in external concentration, be it an enhancement or a depletion.展开更多
Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Usi...Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.展开更多
A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor lo...A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor loaded with the oxide powder. The isothermal response to an 18O-enriched pulse passing through the reactor, thereby maintaining chemical equilibrium, is measured by on-line mass spectrometry. Evaluation of the apparent exchange rate follows from the uptake of 18O by the oxide at given reactor residence time and surface area available for exchange. The developed PIE technique is rapid, simple and highly suitable for screening and systematic studies. No rapid heating/quenching steps are required to facilitate 18O tracer anneal or analysis, as in other commonly used techniques based upon oxygen isotopic exchange. Moreover, the relative distribution of the oxygen isotopologues 18O2, 16O18O, and 16O2 in the effluent pulse provides insight into the mechanism of the oxygen exchange reaction. The PIE technique has been demonstrated by measuring the exchange rate of selected oxides with enhanced oxide ionic conductivity in the range of 350?900 oC. Analysis of the experimental data in terms of a model with two consecutive, lumped steps for the isotopic exchange reaction shows that for mixed conductors Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La2NiO4+δ the reaction is limited by the apparent rate of dissociative adsorption of O2 molecules at the oxide surface. For yttria-stabilized zirconia (YSZ), a change-over takes place, from rate-limitations by oxygen incorporation below ∽800 oC to rate-limitations by O2 dissociative adsorption above this temperature. Good agreement is obtained with exchange rates reported for these materials in literature.展开更多
The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different PH, resin type are investigated. Besides 3 the desorption conditions are studied under diff...The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different PH, resin type are investigated. Besides 3 the desorption conditions are studied under different temperature.The adsorption and desorption mechanism are described to obtain the optimumtechnological condition of inosine extraction.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
To understand the "elastic softening" of Li-Si alloys for the development of Li-ion batteries, the effect of stress-induced change of entropy on the mechanical properties of lithiated materials is examined within th...To understand the "elastic softening" of Li-Si alloys for the development of Li-ion batteries, the effect of stress-induced change of entropy on the mechanical properties of lithiated materials is examined within the theories of thermodynamics and linear elasticity, An approach is presented whereby the change of Gibbs free energy is governed by the change of the mixture entropy due to stress-induced migration of mobile atoms, from which the contribution of the change of the mixture entropy to the apparent elastic modulus of lithiated materials is determined. The reciprocal of the apparent elastic modulus of a lithiated material is a linear function of the concentration of mobile Li-atoms at a stress-free state and the square of the mismatch strain per unit mole fraction of mobile Li-atoms.展开更多
Cyclic nucleotide-gated ion channels (CNGs) are distributed most widely in the neuronal cell. Great progress has been made in molecular mechanisms of CNG channel gating in the recent years. Results of many experimen...Cyclic nucleotide-gated ion channels (CNGs) are distributed most widely in the neuronal cell. Great progress has been made in molecular mechanisms of CNG channel gating in the recent years. Results of many experiments have indicated that the stoichiometry and assembly of CNG channels affect their property and gating. Experiments of CNG mutants and analyses of cys- teine accessibilities show that cyclic nucleotide-binding domains (CNBD) bind cyclic nucleotides and subsequently conformational changes occurred followed by the concerted or cooperative conformational change of all four subunits during CNG gating. In order to provide theoretical assistances for further investigation on CNG channels, especially regarding the disease pathogenesis of ion channels, this paper reviews the latest progress on mechanisms of CNG channels, functions of subunits, processes of subunit assembly, and conformational changes of subunit regions during gating.展开更多
Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "...Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "4453" effects, as fol ows: "Four increases" include to increase loosen soil quantity in cultivation layers, soil nutri-ents use, "water pool" in soils, and "oxygen pool" in soils. Four reductions are to reduce soil erosion, carbon emission, salt content and heavy metal in soils. Five resistances refer to improve crop resistance capacity in terms of drought, high tem-perature, lower temperature, disease and lodging. Three improvements indicate to enhance photosynthetic efficiency over 10%, yield in 10%-30% and quality over 5%. lt is researched that without additional chemical fertilizer, yield could increase by 10% by labor force, animal, tractor or smash-ridging machine. What’s more, by smash-ridging cultivation, the depth can be 20 times or higher compared with tractor cultivation, with looser soils. lt is estimated that if smash-ridging cultivation is applied once in agricultural lands in China, present soil layers can be twice as deep as present. Specifical y, the thickness of loose soil-layers could be extended from 10-18 cm at present to 25-35 cm, and natural rainfal would increase by 40 bil ion cm3. After vitalization of soil nutrients, chemical fertilizer would decrease by 7 bil ion kg, and the increased c rops would feed more than 300 mil ion population as per yield at 7 50 kg/hm2.展开更多
The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experie...The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.展开更多
The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cycli...The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cyclic polarization techniques. The results showed that the corrosion of copper tube are mainly caused by the SO42- and Cl- ions in the circulating water, and the former is mainly responsible for the general corrosion of the copper tube whilst the latter for the pitting corrosion. The different influences of SG42- and Cl- ions on the corrosion type of copper tube may be attributed to that the radius of SO42- ion is much larger than that of Cl- ion. Meanwhile the results also indicated that SO42- inhibits the pitting corrosion caused by Cl- and Cl- inhibits the general corrosion initiated by SO42- due to their competitive adsorption on the copper matrix.展开更多
CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi-...CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi- crosilica can be introduced to counterbalance the expan- sion generated by spinel formation. In this paper, the of microsilica dosage on properties of eastables was evaluated. Expansion, expressed by the permanent linear change (PLC), is highly dependent on the dosage of microsilica. Unexpected expansion occurs when the dos- age of microsilica is too low due to dominant effect of spinel and CA6 formation. Too high dosage results in sintering shrinkage, which is related to amount of liquid phase generated by microsilica addition. In addition, HMOR declines dramatically with increasing microsilica dosage. Considering the balance between expansion con- trol and hot property retention, 1.0 mass% of microsili- ca is recommended for the castable containing 4 mass% of magnesia.展开更多
ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ ...ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.展开更多
The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of ...The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.sU2139205,41774011,41874011)the National Key Research and Development Program of China(Grant No.2018YFC1503605)。
文摘Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
文摘The feasibility of recavering glutamic acid by ion exchange method with macroporous resins was investigated. Their adsorption properties in static state and the effective factors,such as pH, concentration of feed and the ratio of ammonium ion toglutamic acid,were systematically explored. The best conditions of separating glutamic acid from mother liquid were obtained.
文摘In this paper, a new complex inorganic ion exchanger Titanium Phosphate - Ammonium Tungstophosphate (abbreviated as TiP - AWP) was synthesized, whose exchange character and chemical structure were studied, Thiscompound exhibits high exchange capacity and selectivity for Cs+, its exchangecapacity attains 0. 95 mmol/g in the medium of 0. 1 mol/L HNO3, andwhich almost doesn’ t change in the 1 AW imitated waste solution. There areno change in exchange capacity and structure after several times of exchanging,eluting, regenerating, which is of great importance to the separation and uptaking of radio - nuclides. Further more, this exchanger has good thermal andradioactive stability.
基金financial support from the various funding agencies including the Major State Basic Research Development Program of China (973 Program, 2009CB219604)the National Natural Science Foundation of China (41272175)+1 种基金the Key Project of the National Science & Technology (2011ZX05034-001)the China Scholarship Council
文摘According to dimensionless analysis of the coalbed methane (CBM) production data of Fanzhuang block in southern Qinshui basin, the dimensionless gas production rate is calculated to quantitatively divide the CBM well production process into four stages, i.e., drai- nage stage, unstable gas production stage, stable gas pro- duction stage, and gas production decline stage. By the material balance method, the coal reservoir permeability change in different stages is quantitatively characterized. The characteristics and control mechanisms of change in coalbed permeability (CICP) during different production stages are concluded on five aspects, i.e., permeability trend variation, controlling mechanism, system energy, phase state compositions, and production performance. The study reveals that CICP is characterized by first decline, then recovery, and finally by increase and is controlled directly by effective stress and matrix shrinkage effects. Further, the duration and intensity of the matrix shrinkage effect are inherently controlled by adsorption and desorp- tion features.
基金Project 49206062 funded by the National Natural Science Foundation of China
文摘Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is found that both records are very similar from 72 K a B.P. to the present, especially for the benthic oxygen isotope record. The linear regression shows that δ18O changes (0.9995‰ for benthic foraminifers and 1.022‰ for planktonic foraminifers) are equal to 100 m in sea-level fluctuation. After making temperature correction in the δ18O record of benthic foraminifers from 72 to 120 Ka B.P., the curve of sea-level oscillation of the South China Sea since 186 Ka B.P. has been reconstructed. The lowermost sea - level that occurred in the last glacial maximum and oxygen isotope stage 6 is approximately - 130 m.
文摘The Chang'e-3 (CE-3) lander and rover mission to the Moon was an in- termediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultravi- olet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar sub- surface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing pro- cedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.
文摘The response of yeast to sharp environmental increases in calcium concentration has been extensively studied. However, systematic studies of the response under more general changes are still lacking. Only limited exploration of cellular responses has been conducted where calcium concentration is decreased. This article describes a set of luminometric experiments that monitor the cytosolic calcium concentration under changing external concentration conditions. As a decrease in external calcium concentrations requires the use of large sample volumes, the experiments require the use of equipment adapted for this purpose. We describe the modification of commercial luminometric equipment to make the exploration possible. We explore the yeast cellular behavior when an increase in external calcium concentration is followed by a decrease in external calcium concentration. We compare these results with those from the case of a double pulse of concentration increase. Results from the experiment show that the first, concentration increasing pulse produces the well-known sharp increase in cytosolic calcium followed by calcium sequestration to return to a cytosolic concentration near its initial condition. Surprisingly, the calcium decrease step shows similar results with a cytosolic increase followed by a return to lower levels. The results suggest the presence of a calcium sensing mechanism regulating calcium influx from external sources. This mechanism would produce channel opening as a response to any changes in external concentration, be it an enhancement or a depletion.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917124960522)the Program for Promotion of Science at Universities in Guangdong Province of China(Grant No.2018KTSCX062)。
文摘Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.
文摘A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor loaded with the oxide powder. The isothermal response to an 18O-enriched pulse passing through the reactor, thereby maintaining chemical equilibrium, is measured by on-line mass spectrometry. Evaluation of the apparent exchange rate follows from the uptake of 18O by the oxide at given reactor residence time and surface area available for exchange. The developed PIE technique is rapid, simple and highly suitable for screening and systematic studies. No rapid heating/quenching steps are required to facilitate 18O tracer anneal or analysis, as in other commonly used techniques based upon oxygen isotopic exchange. Moreover, the relative distribution of the oxygen isotopologues 18O2, 16O18O, and 16O2 in the effluent pulse provides insight into the mechanism of the oxygen exchange reaction. The PIE technique has been demonstrated by measuring the exchange rate of selected oxides with enhanced oxide ionic conductivity in the range of 350?900 oC. Analysis of the experimental data in terms of a model with two consecutive, lumped steps for the isotopic exchange reaction shows that for mixed conductors Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La2NiO4+δ the reaction is limited by the apparent rate of dissociative adsorption of O2 molecules at the oxide surface. For yttria-stabilized zirconia (YSZ), a change-over takes place, from rate-limitations by oxygen incorporation below ∽800 oC to rate-limitations by O2 dissociative adsorption above this temperature. Good agreement is obtained with exchange rates reported for these materials in literature.
文摘The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different PH, resin type are investigated. Besides 3 the desorption conditions are studied under different temperature.The adsorption and desorption mechanism are described to obtain the optimumtechnological condition of inosine extraction.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
文摘To understand the "elastic softening" of Li-Si alloys for the development of Li-ion batteries, the effect of stress-induced change of entropy on the mechanical properties of lithiated materials is examined within the theories of thermodynamics and linear elasticity, An approach is presented whereby the change of Gibbs free energy is governed by the change of the mixture entropy due to stress-induced migration of mobile atoms, from which the contribution of the change of the mixture entropy to the apparent elastic modulus of lithiated materials is determined. The reciprocal of the apparent elastic modulus of a lithiated material is a linear function of the concentration of mobile Li-atoms at a stress-free state and the square of the mismatch strain per unit mole fraction of mobile Li-atoms.
基金This work was supported by the Provincial Key Projects for Scientifical and Technological Research of Zhejiang Province (No. 2006C12058)National Natural Science Foundation of China (No. 30571335) and a Grant-in-Aid for Innovative Training of Doctoral Students in JIangsu Province,China.
文摘Cyclic nucleotide-gated ion channels (CNGs) are distributed most widely in the neuronal cell. Great progress has been made in molecular mechanisms of CNG channel gating in the recent years. Results of many experiments have indicated that the stoichiometry and assembly of CNG channels affect their property and gating. Experiments of CNG mutants and analyses of cys- teine accessibilities show that cyclic nucleotide-binding domains (CNBD) bind cyclic nucleotides and subsequently conformational changes occurred followed by the concerted or cooperative conformational change of all four subunits during CNG gating. In order to provide theoretical assistances for further investigation on CNG channels, especially regarding the disease pathogenesis of ion channels, this paper reviews the latest progress on mechanisms of CNG channels, functions of subunits, processes of subunit assembly, and conformational changes of subunit regions during gating.
基金Supported by the Key Project of Science and Technology of Guangxi(1222014-2C)Achievements Transformation Project of Guangxi Academy of Agricultural Science and Technology(201405)Fundamental Research Funds for Guangxi Academy of Agricultural Science and Technology(2014YZ07)~~
文摘Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "4453" effects, as fol ows: "Four increases" include to increase loosen soil quantity in cultivation layers, soil nutri-ents use, "water pool" in soils, and "oxygen pool" in soils. Four reductions are to reduce soil erosion, carbon emission, salt content and heavy metal in soils. Five resistances refer to improve crop resistance capacity in terms of drought, high tem-perature, lower temperature, disease and lodging. Three improvements indicate to enhance photosynthetic efficiency over 10%, yield in 10%-30% and quality over 5%. lt is researched that without additional chemical fertilizer, yield could increase by 10% by labor force, animal, tractor or smash-ridging machine. What’s more, by smash-ridging cultivation, the depth can be 20 times or higher compared with tractor cultivation, with looser soils. lt is estimated that if smash-ridging cultivation is applied once in agricultural lands in China, present soil layers can be twice as deep as present. Specifical y, the thickness of loose soil-layers could be extended from 10-18 cm at present to 25-35 cm, and natural rainfal would increase by 40 bil ion cm3. After vitalization of soil nutrients, chemical fertilizer would decrease by 7 bil ion kg, and the increased c rops would feed more than 300 mil ion population as per yield at 7 50 kg/hm2.
基金supported by the National Research Foundation of Korea through WCU(R31-2009-000-10083-0)
文摘The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory. It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions. More importantly, the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered, in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic. The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.
文摘The influence of chloride or sulphur dioxide on the corrosion behavior of copper tube in the air-conditioning system was studied using scanning electron microscope (SEM), energy dispersion spectrometer (EDS) and cyclic polarization techniques. The results showed that the corrosion of copper tube are mainly caused by the SO42- and Cl- ions in the circulating water, and the former is mainly responsible for the general corrosion of the copper tube whilst the latter for the pitting corrosion. The different influences of SG42- and Cl- ions on the corrosion type of copper tube may be attributed to that the radius of SO42- ion is much larger than that of Cl- ion. Meanwhile the results also indicated that SO42- inhibits the pitting corrosion caused by Cl- and Cl- inhibits the general corrosion initiated by SO42- due to their competitive adsorption on the copper matrix.
文摘CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi- crosilica can be introduced to counterbalance the expan- sion generated by spinel formation. In this paper, the of microsilica dosage on properties of eastables was evaluated. Expansion, expressed by the permanent linear change (PLC), is highly dependent on the dosage of microsilica. Unexpected expansion occurs when the dos- age of microsilica is too low due to dominant effect of spinel and CA6 formation. Too high dosage results in sintering shrinkage, which is related to amount of liquid phase generated by microsilica addition. In addition, HMOR declines dramatically with increasing microsilica dosage. Considering the balance between expansion con- trol and hot property retention, 1.0 mass% of microsili- ca is recommended for the castable containing 4 mass% of magnesia.
基金Under the auspices of the National Natural Science Foundation of China(No.49671017).
文摘ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.
基金National Natural Science Foundation of China (60277002) Scientific Research Foundation of Xi’an JiaotongUniversity
文摘The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.