期刊文献+
共找到2,430篇文章
< 1 2 122 >
每页显示 20 50 100
FREE ALKALI RECOVERY FROM NaOH LEACHING LIQUOR OF TUNGSTEN ORE BY ELECTROLYSIS WITH ION-EXCHANGE MEMBRANE
1
作者 Guiqing Zhang Qixiu Zhang 《Journal of Central South University》 SCIE EI CAS 1998年第2期23-26,共4页
Caustic soda leaching liquor of tungsten ore always contains a certain amount of free alkali. General method of removing free alkali in the liquor is to neutralize it by inorganic acid. A new method, i.e. applying ele... Caustic soda leaching liquor of tungsten ore always contains a certain amount of free alkali. General method of removing free alkali in the liquor is to neutralize it by inorganic acid. A new method, i.e. applying electrolysis with ion exchange membrane to recover free alkali from caustic soda leaching liquor of tungsten ore, was proposed in the paper. In the electrolysis cell the effective area of membrane is 100 mm×100 mm, the anode is β PbO 2 plated at screen of titanium net, the cathode is active nickel plated at screen of stainless steel net, and the membrane is a kind of perfluorsulphonic acid membrane. Some effect factors of electrolysis process including the NaOH concentration in anolyte and catholyte, distance between electrodes, temperature, current density, are investigated. The results show that, by choosing proper operating condition, the specific energy consumption can be controlled within 2 kWh·kg -1 NaOH. Electrolysis with ion exchange membrane can not only recover free alkali from caustic soda leaching liquor, reduce the consumption of inorganic acid, but also utilize the hydrogen gas produced in the process to produce tungsten powder. 展开更多
关键词 ion exchange membrane ELECTROLYSIS tungsten CAUSTIC SODA
下载PDF
A RAPID METHOD TO DETERMINE DIFFUSION COEFFICIENTS OF COUNTER-IONS IN AN ION-EXCHANGE MEMBRANE
2
作者 徐铜文 何炳林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第1期85-90,共6页
1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion excha... 1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck 展开更多
关键词 ion-exchange membrane diffusion COEFFICIENT Donnan DIALYSIS NERNST-PLANCK EQUATion
下载PDF
Plasma‐oxidized 2D MXenes subnanochannel membrane for high‐performance osmotic energy conversion 被引量:2
3
作者 Zhengmao Ding Tiancheng Gu +5 位作者 Rui Zhang Shouyi Sun Kaiqiang Wang Hanli Zhang Jinjin Li Yunjun Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期178-191,共14页
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene... Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting. 展开更多
关键词 ion transport MXenes membranes osmotic energy harvesting PLASMA two‐dimensional nanochannels
下载PDF
Suppression of current-induced membrane discharge of bipolar membranes by regulating ion crossover transport
4
作者 Tingting Yu Haolan Tao +2 位作者 Jingkun Li Cheng Lian Honglai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期387-395,共9页
Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is l... Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs. 展开更多
关键词 Bipolar membranes Current-induced membrane discharge Salt ion crossover Diffusion-migration-reaction process
下载PDF
An efficient strategy for the preparation of MIL-53(Al)-NH_(2)membranes with high ion selectivity and desalination performance
5
作者 Wenmin Li Zheng Liu +4 位作者 Xingya Li Rongqiang Fu Zhaoming Liu Tingting Xu Tongwen Xu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期41-47,I0010,共8页
The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divale... The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment. 展开更多
关键词 metal-organic framework MIL-53(Al)-NH_(2) membrane ion selectivity DESALINATion
下载PDF
Monovalent cation perm-selective membranes(MCPMs)"New developments and perspectives 被引量:9
6
作者 Liang Ge Bin Wu +7 位作者 Dongbo Yu Abhishek N.Mondal Linxiao Hou Noor U1 Afsar Qiuhua Li Tingting Xu Jibin Miao Tongwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1606-1615,共10页
As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multival... As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes(MCPMs) and their preparation technologies including(1) covalent crosslinking,(2) surface modification,(3) polymer blending,(4) electrospinning,(5) nanofiltration alike membrane,and(6) organic–inorganic hybrid. The relevant advantages and disadvantages with respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives. 展开更多
关键词 ion exchange membranes Monovalent cation perm-selective membranes ELECTRODIALYSIS ion separation Electro-nanofiltration
下载PDF
Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells 被引量:21
7
作者 Shengli Wang Ming Hou +5 位作者 Qing Zhao Yongyi Jiang Zhen Wang Huizhe Li Yu Fu Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期168-174,共7页
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ... Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Stainless steel bipolar plate Proton exchange membrane fuel cell Arc ion plating Multilayer coating
下载PDF
The control and optimization of macro/micro-structure of ion conductive membranes for energy conversion and storage 被引量:7
8
作者 Xiaoming Yan Wenji Zheng +3 位作者 Xuehua Ruan Yu Pan Xuemei Wu Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期558-571,共14页
Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electr... Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electronic conductivity.Firstly,this feature article reviews the recent studies on the development of new nonfluorinated ICMs with low cost and their macro/micro-structure control.In general,these new nonfluorinated ICMs have lower conductivity than commercial perfluorinated ones,due to their poor ion transport channels.Increasing ion exchange capacity(IEC)would create more continuous hydrophilic channels,thus enhancing the conductivity.However,high IEC also expands the overall hydrophilic domains,weakens the interaction between polymer chains,enhances the mobility of polymer chains,and eventually induces larger swelling.The micro-scale expansion and macro-scale swelling of the ICMs with high IEC could be controlled by limiting the mobility of polymer chains.Based on this strategy,some ef ficient techniques have been developed,including covalent crosslinking,semi-interpenatrating polymer network,and blending.Secondly,this review introduces the optimization of macro/microstructure of both perfluorinated and nonfluorinated ICMs to improve the performance.Macro-scale multilayer composite is an ef ficient way to enhance the mechanical strength and the dimensional stability of the ICMs,and could also decrease the content of per fluorosulfonic acid resin in the membrane,thereby reducing the cost of the perfluorinated ICMs.Long side chain,multiple functionalization,small molecule inducing micro-phase separation,electrospun nano fiber,and organic–inorganic hybrid could construct more ef ficient ion transport channels,improving the ion conductivity of ICMs. 展开更多
关键词 ion conductive membranes MACROSTRUCTURE Microstructure Optimization
下载PDF
Engineering Leaf-Like UiO-66-SO3H Membranes for Selective Transport of Cations 被引量:7
9
作者 Tingting Xu Muhammad Aamir Shehzad +3 位作者 Xin Wang Bin Wu Liang Ge Tongwen Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期65-75,共11页
Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful prepa... Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs,such as arduous selfassembly,poor water resistance,and tedious fabrication strategies.Besides,low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue,which limits their widespread use in membrane technology.Therefore,it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation.In this context,we report a facile in situ smart growth strategy to successfully produce ultrathin(<600 nm)and leaflike UiO-66-SO3H membranes at the surface of anodic alumina oxide.The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes,which accelerate the cation permeation(~3×faster than non-functionalized UiO-66 membrane)and achieve a high ion selectivity(Na^+/Mg^2+>140).The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs. 展开更多
关键词 Metal–organic frameworks In situ smart growth UiO-66-SO3H membrane ion separation
下载PDF
Enhancement of removal efficiency of heavy metal ions by polyaniline deposition on electrospun polyacrylonitrile membranes 被引量:4
10
作者 Noor Mohammad Yomen Atassi 《Water Science and Engineering》 EI CAS CSCD 2021年第2期129-138,共10页
This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs r... This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively. 展开更多
关键词 membrane ELECTROSPINNING POLYANILINE POLYACRYLONITRILE Heavy metal ion removal
下载PDF
Preparation and Characterization of the Modified Polyvinylidene Fluoride (PVDF) Hollow Fibre Microfiltration Membrane 被引量:2
11
作者 Laizhou SONG Zunju ZHANG +1 位作者 Shizhe SONG Zhiming GAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期55-60,共6页
A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the pr... A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated. 展开更多
关键词 Microfiltration hollow fibre membrane Graft polymerization modification Acrylic acid Polyvinylidene fluoride Cu^2+ ion
下载PDF
REDUCTION OF FERRIC IRON IN THE TITANIUM SULFATE SOLUTION BY THE ION EXCHANGE MEMBRANE PRIMARY CELL METHOD 被引量:1
12
作者 Li Qinggang Zhou Kanggen Zhang Guiqing Zhang Qixiou (Department of Metallurgical Science and Engineering, Central South University of Technology, Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1999年第2期90-94,共5页
In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem ... In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2. 展开更多
关键词 PRIMARY cell ion EXCHANGE membrane Fe 3+ REDUCTion TITANIUM dioxide
下载PDF
Structure and resistance of concentration polar layer on cation exchange membrane-solution interface 被引量:1
13
作者 桑商斌 黄可龙 +1 位作者 李晓刚 王显 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1436-1441,共6页
Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. T... Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e 展开更多
关键词 ion exchange membrane AC electrical field AC impedance membrane/solution interface STRUCTURE RESISTANCE
下载PDF
Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane 被引量:3
14
作者 郑辉东 陈晶晶 +1 位作者 王碧玉 赵素英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期827-834,共8页
Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect... Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency. 展开更多
关键词 copper ion supported emulsion liquid membrane extraction rate hollow fiber
下载PDF
Study on the permselectivity of ion exchange membrane 被引量:1
15
作者 MENGHong WANGSanfan 《Rare Metals》 SCIE EI CAS CSCD 2002年第4期243-249,共7页
Ion exchange membranes with high permselectivity (the character of separatingcations from anions or anions from cations) and high selectivity (the character of separatingcations or anions of different valencies) are i... Ion exchange membranes with high permselectivity (the character of separatingcations from anions or anions from cations) and high selectivity (the character of separatingcations or anions of different valencies) are important for electrodialysis process. The Donnanequilibrium theory, based on the equilibrium of ions and no electric field, can not exactly explainthe permselectivity of ion exchange membrane for ED process, since it is impossible to set up a ionexchange equilibrium between membrane and solution and to neglect the influence of electricaldriving force on ions during ED process. A novel model named 'anti-electric potential' isestablished to interpret the permselectivity of ion exchange membrane, according to thedetermination of electric potential between membranes and the variation of elements content insolutions and membranes. The results of experiment prove that the 'anti-electric potential' reallyexists within membranes. As for the selectivity, the results reveal that electric potential andhydration energy have great influence on the concentration and mobility of ions in membranes. 展开更多
关键词 ion exchange membrane PERMSELECTIVITY SELECTIVITY electric potential
下载PDF
Determination of inorganic anions in ethyl acetate by in-line hollow fiber membrane extraction with ion chromatography 被引量:1
16
作者 Zhen Zhen Hu Ying Ying Zhong Yun Chang Fan Yan Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第12期1498-1501,共4页
In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-... In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples. 展开更多
关键词 Inorganic anions Ethyl acetate In-line hollow fiber membrane extraction ion chromatography
下载PDF
PVC Membrane Selective Electrode for Determination of Cadmium(Ⅱ) Ion in Chocolate Samples 被引量:2
17
作者 Sulekh Chandra Deepshikha Singh Anjana Sarkar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第4期480-488,共9页
Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosp... Benzil bis(carbohydrazone)(BBC) is prepared and explored as new N N Schiff's base, which plays the role of an excellent ion carrier in the construction of a Cd(II) ion membrane sensor. The tris(2-ethylhexyl) phosphate best performance corresponds to a membrane composition of 30% poly(vinyl chloride), 65%(TEHP), 3.5% BBC and 1.5% tetradodecyl-ammoniumtetrakis(4-chlorophenyl) borate(ETH 500). This sensor shows very good selectivity and sensitivity towards cadmium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition, selectivity, pH and influence of additive on the response properties of electrode were investigated. The response mechanism was discussed in the view of UV-spectroscopy. The electrode exhibits a Nernstian behavior(with slope of 29.7 mV per decade) over a very wide concentration range from 1.0×10?1 to 1.0×10?8 mol·L?1 with a detection limit of 3.2×10?8 mol·L?1. It shows rela-tively fast response time in whole concentration range(<8 s) and can be used for at least 10 weeks in the pH range of 2.0-9.0. The proposed sensor is successfully used for the determination of cadmium in different chocolate sam-ples and as indicator electrode in titration with ethylene diamine tetraacetate(EDTA). 展开更多
关键词 benzil bis(carbohydrazone) ionOPHORE Cd(II) ion membrane sensor selectivity coefficient additive
下载PDF
Analysis of Macro and Micronutrients in Soils from Palestine Using Ion Exchange Membrane Technology 被引量:1
18
作者 Zaher Barghouthi Sameer Amereih +1 位作者 Basel Natsheh Mazen Salman 《Open Journal of Soil Science》 2012年第1期44-49,共6页
Ion Exchange membrane technology (IEM) is a method that allowed a single extraction process and a single subsequent measurement of different elements that are available in soil. The values of the available forms of th... Ion Exchange membrane technology (IEM) is a method that allowed a single extraction process and a single subsequent measurement of different elements that are available in soil. The values of the available forms of the different macro- and micronutrients obtained by IEM extraction were compared with the values of the soluble form obtained by conventional extraction methods. In surface soil sample, the concentrations of available potassium, nitrate, phosphate, iron and boron were 37.7 mg kg–1, 17.5 mg kg–1, 3.6 mg kg–1, 171.0 μg kg–1, and 4.2 μg kg–1 respectively were greater than that of soluble forms of the same elements which were 7.0 mg kg–1, 9.2 mg kg–1, 0.4 mg kg–1, 109.0 μg kg–1, and 1.9 μg kg–1 respectively. 展开更多
关键词 ion EXCHANGE membrane Available ionS Soil NUTRIENTS Palestine
下载PDF
Ultrafiltration recovery of alginate: Membrane fouling mitigation by multivalent metal ions and properties of recycled materials 被引量:1
19
作者 Daqi Cao Jingyi Jin +4 位作者 QunhuiWang Xin Song Xiaodi Hao Eiji Iritani Nobuyuki Katagiri 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2881-2889,共9页
Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(U... Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(UF)is generally used for concentration of polymers.Furthermore,the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials.In this study,membrane fouling mitigation by multivalent metal ions,both individually and in combination,and properties of recycled materials were investigated for UF recovery of sodium alginate(SA).The filtration resistance showed a significantly negative correlation with the concentration of metal ions,arranged in the order of Mg^2+<Ca^2+<Fe^3+<Al^3+(filtration resistance mitigation),and the moisture content of recycled filter cake showed a marked decrease.For Ca^2+,Mg^2+,Fe^3+,and Ca^2++Fe^3+,the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L^–1.However,when the total charge concentration was greater than 5 mmol·L^–1,membrane fouling mitigation increased significantly in the presence of Ca^2+or Fe^3+and remained constant for Mg^2+with the increase of total charge concentration.The filtration resistance mitigation was arranged in the order of Fe^3+>Fe^3++Ca^2+>Ca^2+>Mg^2+.Three mechanisms were proposed in the presence of Fe^3+,such as the decrease of SA concentration,change in p H,and production of hydroxide iron colloids from hydrolysis.The properties of recycled materials(filter cake)were investigated via optical microscope observation,dynamic light scattering,Fourier transform infrared,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy.The results provide further insight into UF recoveries of alginate extracted from AGS. 展开更多
关键词 ULTRAFILTRATion RECOVERY ALGINATE membrane fouling mitigation Multivalent metal ion Cake property
下载PDF
Effect of Hydrogen Reduction of Silver Ions on the Performance and Structure of New Solid Polymer Electrolyte PEI/Pebax2533/AgBF4 Composite Membranes 被引量:1
20
作者 WANG Yanbei RE N Jizhong LI Hui DENG Maicun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期683-690,共8页
In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA1... In this paper, the effect of hydrogen reduction of silver ions on the performance and structure of new solid polymer electrolyte polyetherimide (PEI)/Pebax2533 (Polynylonl2/tetramethylene oxide block copolymer, PA12-PTMO)/AgBF4 composite membranes is investigated. For PEI/Pebax2533/AgBF4 composite membranesprepared with dillerent AgBF4 concentration, the permeances of propylene and ethylene increase with the increase of AgBF4 concentration due to the carrier-facilitated transport, resulting in a high selectivity. But for propyl- ene/propane mixture, the mixed-gas selectivity is lower than its ideal selectivity. The hydrogen reduction strongly influences the membrane performance, which causes the decrease of propylene permeance and the increase of pro-pane permeance. With the increase of hydrogen reduction time, the membranes show a clearly color change from white to brown, yielding a great selectivity loss. The data of X-ray diffraction and FT-IR prove that silver ions are reduced to Ago after hydrogen reduction, and aggregated on the surface of PEI/Pebax2533/AgBF4 composite mem- branes. 展开更多
关键词 solid polymer electrolyte membrane hydrogen reduction of silver ions facilitated transport olefin/paraffin separation
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部