期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Water Absorption and Chloride Ion Penetrability of Concrete Damaged by Freeze-thawing and Loading 被引量:1
1
作者 杨林 SUN Wei +2 位作者 LIU Cheng 张云升 LIANG Fei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期330-337,共8页
In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ult... In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ultrasonic pulse velocity technique was used for evaluating the damage degree of concrete, and the defects of damaged concrete were also detected by X-CT. Water absorption and chloride ion penetrability were used for describing the transport properties of damaged concrete. Effects of damage degree on the water absorption rate and chloride ion penetrability were investigated in detail and the relationships were also established. The results show that the water absorption of concrete makes various responses to damage degree due to the difference of concrete type and damage method. For same concrete with similar damage degree, the water absorption rate of F-T damaged concrete is usually larger than that of concrete damaged by loading. The chloride ion penetrability of damaged concrete increases linearly with increasing damage degree, which is more sensitive to damage degree if the original penetrability of sound concrete is higher. 展开更多
关键词 concrete water absorption chloride ion freeze-thawing loading durability
下载PDF
Simulation of Intermediate State Absorption Enhancement in Rare-Earth Ions by Polarization Modulated Femtosecond Laser Field
2
作者 Wen-Jing Cheng Shi-Hua Zhao 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第11期23-27,共5页
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo... We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system. 展开更多
关键词 ab Simulation of Intermediate State absorption Enhancement in Rare-Earth ions by Polarization Modulated Femtosecond Laser Field
下载PDF
Impact of Salt Stress on Growth and Ion Uptake of Different Parts of Oil Sunflower Seedlings 被引量:7
3
作者 杨晓翠 李文建 +1 位作者 曲颖 张天虎 《Agricultural Science & Technology》 CAS 2011年第3期354-358,共5页
[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environm... [Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings. 展开更多
关键词 Oil sunflower seedlings NACL ion absorption
下载PDF
Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
4
作者 朱美玉 赵珂 +1 位作者 宋军 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期327-333,共7页
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res... The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes. 展开更多
关键词 two-photon absorption fluorescent probe zinc ion intra-molecular charge transfer
下载PDF
Tuning plasmon absorption of unmodified silver nanoplates for sensitive and selective detection of copper ions by introduction of ascorbate 被引量:1
5
作者 Xiao-Dong Xia Tian-Lun Wang Xiao-Yuan Yuan 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第10期1403-1406,共4页
Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate a... Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate as mild reductants,Cu^2+ ions are reduced into Cu~+ and the Cu^+ is further reduced to Cu,which is deposited on the surface of the silver nanoplates.The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption.Therefore,trace Cu^2+ can be detected.The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu^2+concentration over a range of 40-340 μmol L^(-1) with a limit of detection of 9.0 μmol L^(-1).Moreover,such silver nanoplate-based optical sensors provide good selectivity for Cu^2+ detection,and most other metal ions do not disturb its detection.Moreover,the practicality of the proposed sensor was tested.This Cu^2+assay is advantageous in its simplicity,selectivity,and cost-effectiveness. 展开更多
关键词 Silver nanoplate Plasmon absorption Wavelength shift Optical sensor Copper ions Ascorbate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部