The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japo...The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model. According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min^-1 for Cu^2+ and Cd^2+ respectively. The experimental biosorption equilibrium data for Cu^2+ and Cd^2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu^2+ and Cd^2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu^2+ was better than Cd^2+.展开更多
The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current...The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.展开更多
Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated ...Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).展开更多
Implantations of 100 keV In ions to high dose of 6 ×1016 In/cm2 were performed into a-axis oriented crystals of Al2O3 held at a liquid nitrogen temperature. The implantation produced about 80nm thick amorphous su...Implantations of 100 keV In ions to high dose of 6 ×1016 In/cm2 were performed into a-axis oriented crystals of Al2O3 held at a liquid nitrogen temperature. The implantation produced about 80nm thick amorphous surface layer. Isothermal annealing in flowing Ar gas ambient was done at the temperatures of 600, 700, 800, and 900℃ . Rutherford backscattering and channeling (RBS-C), scanning electron microscope (SEM) and reflection high energy electron diffraction (RHEED) have been employed to investigate the annealing behaviors.The indium shows anomalous diffusion in amorphous layer. The migration of indium was composed of two parts: (a) some broadening of In profile corresponding to diffusion within the amorphous layer, (b) segregation of In to surface to form In2O3 which appears as islands on the surface. When the ambient is made oxygen free, the segregated In is lost by evaporation at the surface.展开更多
In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiat...In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiation of three bias conditions. It has been found experimentally that back gate threshold shift and leakage current were greatly reduced during irradiation for hardened transistors, comparing to control ones. It has been confirmed that the improvement of total-dose properties of SOI devices is attributed to the silicon nanocrystals (nanoclusters) in buried oxides introduced by ion implantation.展开更多
Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic fiel...Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic field. The hyperfine magnetic fields decrease after the irradiation due to the change of supertransferred field. After the irradiation, the chain Fe(a)-oxygen-Fe(d) become longer and it leads to decrease of the supertransferred field.展开更多
The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event cha...The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event charge collection is composed of diffusion, drift, and the parasitic bipolar effect, while for PMOSs in the special layout, the parasitic bipolar junction transistor cannot turn on. Heavy ion experimental results show that PMOSs without parasitic bipolar amplification have a 21.4% decrease in the average SET pulse width and roughly a 40.2% reduction in the SET cross-section.展开更多
Soil environment on earth contains a variety of ions,which are expected to play a vital role in the biodegradation of plastics discarded in the environment.In this work,poly(butyleneadipate-co-terephthalate)(PBAT)is e...Soil environment on earth contains a variety of ions,which are expected to play a vital role in the biodegradation of plastics discarded in the environment.In this work,poly(butyleneadipate-co-terephthalate)(PBAT)is employed as a model biodegradable plastic to study the specific ion effects on the enzymatic degradation of polyester plastics.The results show that the specific ion effects on the enzymatic degradation rate of the PBAT films and on the catalytic rate constant for the enzymatic hydrolysis of the ester bonds are strongly dependent on temperature and ionic strength.Both the enzymatic degradation rate and catalytic rate constant decrease following the trends Na^(+)>K^(+)>Ca^(2+)and Cl^(-)>SO_(4)^(2-)>NO_(3)^(-)for cations and anions,respectively,indicating that the ion-specific enzymatic degradation of the PBAT films is closely correlated with the specific ion effects on enzymatic hydrolysis of the ester bonds.Our study shows that the specific ion effects on the enzyme activity can be understood by taking into account the ion-specific cation-anion interaction,ionic dispersion force,salting-out effect and salting-in effect.This study of specific ion effects on the enzymatic hydrolysis of the ester bonds and the resultant enzymatic degradation of the PBAT films would offer us a new clue to develop new biodegradable,environmentally friendly synthetic plastics.展开更多
Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "...Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "4453" effects, as fol ows: "Four increases" include to increase loosen soil quantity in cultivation layers, soil nutri-ents use, "water pool" in soils, and "oxygen pool" in soils. Four reductions are to reduce soil erosion, carbon emission, salt content and heavy metal in soils. Five resistances refer to improve crop resistance capacity in terms of drought, high tem-perature, lower temperature, disease and lodging. Three improvements indicate to enhance photosynthetic efficiency over 10%, yield in 10%-30% and quality over 5%. lt is researched that without additional chemical fertilizer, yield could increase by 10% by labor force, animal, tractor or smash-ridging machine. What’s more, by smash-ridging cultivation, the depth can be 20 times or higher compared with tractor cultivation, with looser soils. lt is estimated that if smash-ridging cultivation is applied once in agricultural lands in China, present soil layers can be twice as deep as present. Specifical y, the thickness of loose soil-layers could be extended from 10-18 cm at present to 25-35 cm, and natural rainfal would increase by 40 bil ion cm3. After vitalization of soil nutrients, chemical fertilizer would decrease by 7 bil ion kg, and the increased c rops would feed more than 300 mil ion population as per yield at 7 50 kg/hm2.展开更多
The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties.Under the continuous irradiation of low energy Ga+,Ne+,and He+ions,an ion compaction effect ...The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties.Under the continuous irradiation of low energy Ga+,Ne+,and He+ions,an ion compaction effect has been found in hollow FePt nanochains with ultrathin shell that the volumes of the nanochains are gradually compacted by ions.The deep learning algorithm has been successfully applied to automatically and precisely measure average sizes of spheres in hollow FePt nanochains.The compaction under ion irradiation is very fast in the very early period and then proceeds to a slow region.The compaction rates in both regions are linearly fitted and all the values are in the order of 10^(–17) to 10^(–14) cm^(2)/ion.Ion species and ion current have effect on the compaction rate.For example,the compaction rate of Ga+ions is larger than those of Ne+and He+ions under an identical current,while irradiation with larger current can compact nanochains faster.The ion compaction effect originates from the local shear deformation caused by the interaction between incident ions and the electrons of Fe and Pt atoms in the ultrathin shell.With continuous irradiation,the crystalline clusters of FePt nanchains firstly grow larger and then become amorphous.The ion compaction effect can be applied to tune the size and crystal structure of hollow structures with a precise rate by choosing appropriate ion species and current.展开更多
The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ...The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ^4HeH^+ obtained with our radio frequency (RF) ion source is larger than that obtained with a duoplasmatron ion source at Argonne National Laboratory (ANL), but the bond lengths of H^+2 and H^+3obtained separately by ANL and by us with the two different ion sources are consistent with each other, which implies that there exists an ion source effect on the bond length of ^4HeH^+. The main reason why the 4^4HeH^+ bond lengths obtained by the two different ion sources are different is also discussed.展开更多
Free radical polymerization and living ion polymerization have been simulated via the dynamic Monte Carlo method with the bond-fluctuation model in this paper. The polymeriza-tion-related parameters such as conversion...Free radical polymerization and living ion polymerization have been simulated via the dynamic Monte Carlo method with the bond-fluctuation model in this paper. The polymeriza-tion-related parameters such as conversion of monomers, degree of polymerization, average molecular weight and its distribution are obtained by statistics. The simulation outputs are con-sistent with the corresponding theoretical predictions. The scaling relationships of the coil size versus chain length are also confirmed at different volume fractions. Furthermore, the effect of diffusion on polymerization is revealed preliminarily in our simulation. Hence the simulation ap-proach has been proven to be feasible to investigate polymerization reactions with the advan-tages that configuration and diffusion of polymer chains can be examined together with polym-erization kinetics.展开更多
Porous FeS nanofibers with numerous nanovoids for use as anode materials for sodium-ion batteries were prepared by electrospinning and subsequent sulfidation. The post-treatment of the as-spun Fe(acac)3-polyacryloni...Porous FeS nanofibers with numerous nanovoids for use as anode materials for sodium-ion batteries were prepared by electrospinning and subsequent sulfidation. The post-treatment of the as-spun Fe(acac)3-polyacrylonitrile composite nanofibers in an air atmosphere yielded hollow Fe2O3 nanofibers due to Ostwald ripening. The ultrafine Fe2O3 nanocrystals formed at the center of the fiber diffused toward the outside of the fiber via Ostwald ripening. On sulfidation, the Fe2O3 hollow nanofibers were transformed into porous FeS nanofibers, which contained numerous nanovoids. The formation of porosity in the FeS nanofibers was driven by nanoscale Kirkendall diffusion. The porous FeS nanofibers were very structurally stable and had superior sodium-ion storage properties compared with the hollow Fe2O3 nanofibers. The discharge capacities of the porous FeS nanofibers for the Ist and 150th cycles at a current density of 500 mA.g-1 were 561 and 592 mA.h-g-1, respectively. The FeS nanofibers had final discharge capacities of 456, 437, 413, 394, 380, and 353 mA-h.g-1 at current densities of 0.2, 0.5, 1.0, 2.0, 3.0, and 5.0 A.g-1, respectively.展开更多
Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainl...Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.展开更多
We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.col...To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.展开更多
Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investig...Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.展开更多
[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36...[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.展开更多
Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using h...Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.展开更多
文摘The process of adsorption of Cu^2+ Cd^2+ by immobilized marine algae was investigated, it can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model. According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min^-1 for Cu^2+ and Cd^2+ respectively. The experimental biosorption equilibrium data for Cu^2+ and Cd^2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu^2+ and Cd^2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu^2+ was better than Cd^2+.
基金Supported by the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences'One-Three Five'Strategic Planningthe JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)+1 种基金the National ITER Program of China under Grant No 2015GB101003the National Natural Science Foundation of China under Grant Nos 11405215,11475223 and 11505236
文摘The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062,11005134,and 11275237)
文摘Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).
文摘Implantations of 100 keV In ions to high dose of 6 ×1016 In/cm2 were performed into a-axis oriented crystals of Al2O3 held at a liquid nitrogen temperature. The implantation produced about 80nm thick amorphous surface layer. Isothermal annealing in flowing Ar gas ambient was done at the temperatures of 600, 700, 800, and 900℃ . Rutherford backscattering and channeling (RBS-C), scanning electron microscope (SEM) and reflection high energy electron diffraction (RHEED) have been employed to investigate the annealing behaviors.The indium shows anomalous diffusion in amorphous layer. The migration of indium was composed of two parts: (a) some broadening of In profile corresponding to diffusion within the amorphous layer, (b) segregation of In to surface to form In2O3 which appears as islands on the surface. When the ambient is made oxygen free, the segregated In is lost by evaporation at the surface.
文摘In this work, top and back gate characteristics of partially-depleted NMOS transistors with enclosed gate fabricated on SIMOX which is hardened by silicon ions implantation were studied under X-ray total-dose irradiation of three bias conditions. It has been found experimentally that back gate threshold shift and leakage current were greatly reduced during irradiation for hardened transistors, comparing to control ones. It has been confirmed that the improvement of total-dose properties of SOI devices is attributed to the silicon nanocrystals (nanoclusters) in buried oxides introduced by ion implantation.
文摘Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic field. The hyperfine magnetic fields decrease after the irradiation due to the change of supertransferred field. After the irradiation, the chain Fe(a)-oxygen-Fe(d) become longer and it leads to decrease of the supertransferred field.
基金supported by the National Natural Science Foundation of China(Grant No.61376109)
文摘The contribution of parasitic bipolar amplification to SETs is experimentally verified using two P-hit target chains in the normal layout and in the special layout. For PMOSs in the normal layout, the single-event charge collection is composed of diffusion, drift, and the parasitic bipolar effect, while for PMOSs in the special layout, the parasitic bipolar junction transistor cannot turn on. Heavy ion experimental results show that PMOSs without parasitic bipolar amplification have a 21.4% decrease in the average SET pulse width and roughly a 40.2% reduction in the SET cross-section.
基金the National Natural Science Foundation of China(Nos.21873091,52033001 and 22103002)the Youth Innovation Promotion Association of CAS(No.Y201769)+1 种基金the National Synchrotron Radiation Laboratory(No.UN2018LHJJ)the Fundamental Research Funds for the Central Universities(No.WK2480000007).
文摘Soil environment on earth contains a variety of ions,which are expected to play a vital role in the biodegradation of plastics discarded in the environment.In this work,poly(butyleneadipate-co-terephthalate)(PBAT)is employed as a model biodegradable plastic to study the specific ion effects on the enzymatic degradation of polyester plastics.The results show that the specific ion effects on the enzymatic degradation rate of the PBAT films and on the catalytic rate constant for the enzymatic hydrolysis of the ester bonds are strongly dependent on temperature and ionic strength.Both the enzymatic degradation rate and catalytic rate constant decrease following the trends Na^(+)>K^(+)>Ca^(2+)and Cl^(-)>SO_(4)^(2-)>NO_(3)^(-)for cations and anions,respectively,indicating that the ion-specific enzymatic degradation of the PBAT films is closely correlated with the specific ion effects on enzymatic hydrolysis of the ester bonds.Our study shows that the specific ion effects on the enzyme activity can be understood by taking into account the ion-specific cation-anion interaction,ionic dispersion force,salting-out effect and salting-in effect.This study of specific ion effects on the enzymatic hydrolysis of the ester bonds and the resultant enzymatic degradation of the PBAT films would offer us a new clue to develop new biodegradable,environmentally friendly synthetic plastics.
基金Supported by the Key Project of Science and Technology of Guangxi(1222014-2C)Achievements Transformation Project of Guangxi Academy of Agricultural Science and Technology(201405)Fundamental Research Funds for Guangxi Academy of Agricultural Science and Technology(2014YZ07)~~
文摘Yuan Longping proposed that smash-ridging technology could be extend-ed widely nationwide. ln the research, smash-ridging technology reconstruct cultiva-tion layers with loose soils in agricultural fields, creating "4453" effects, as fol ows: "Four increases" include to increase loosen soil quantity in cultivation layers, soil nutri-ents use, "water pool" in soils, and "oxygen pool" in soils. Four reductions are to reduce soil erosion, carbon emission, salt content and heavy metal in soils. Five resistances refer to improve crop resistance capacity in terms of drought, high tem-perature, lower temperature, disease and lodging. Three improvements indicate to enhance photosynthetic efficiency over 10%, yield in 10%-30% and quality over 5%. lt is researched that without additional chemical fertilizer, yield could increase by 10% by labor force, animal, tractor or smash-ridging machine. What’s more, by smash-ridging cultivation, the depth can be 20 times or higher compared with tractor cultivation, with looser soils. lt is estimated that if smash-ridging cultivation is applied once in agricultural lands in China, present soil layers can be twice as deep as present. Specifical y, the thickness of loose soil-layers could be extended from 10-18 cm at present to 25-35 cm, and natural rainfal would increase by 40 bil ion cm3. After vitalization of soil nutrients, chemical fertilizer would decrease by 7 bil ion kg, and the increased c rops would feed more than 300 mil ion population as per yield at 7 50 kg/hm2.
基金supported by the National Natural Science Foundation of China(No.52071009,52130103,51701202,and 12011530067)the Fundamental Research Funds for the Central Universities(No.ZY2211).
文摘The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties.Under the continuous irradiation of low energy Ga+,Ne+,and He+ions,an ion compaction effect has been found in hollow FePt nanochains with ultrathin shell that the volumes of the nanochains are gradually compacted by ions.The deep learning algorithm has been successfully applied to automatically and precisely measure average sizes of spheres in hollow FePt nanochains.The compaction under ion irradiation is very fast in the very early period and then proceeds to a slow region.The compaction rates in both regions are linearly fitted and all the values are in the order of 10^(–17) to 10^(–14) cm^(2)/ion.Ion species and ion current have effect on the compaction rate.For example,the compaction rate of Ga+ions is larger than those of Ne+and He+ions under an identical current,while irradiation with larger current can compact nanochains faster.The ion compaction effect originates from the local shear deformation caused by the interaction between incident ions and the electrons of Fe and Pt atoms in the ultrathin shell.With continuous irradiation,the crystalline clusters of FePt nanchains firstly grow larger and then become amorphous.The ion compaction effect can be applied to tune the size and crystal structure of hollow structures with a precise rate by choosing appropriate ion species and current.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10175041 and 10375040).
文摘The bond length of ^4HeH^+ resulting from collision-induced destruction is measured at 1.4420 MeV using the Coulomb Explosion Technique. The measured bond length of ^4HeH^+ is 0.094±0.003nm. The bond length of ^4HeH^+ obtained with our radio frequency (RF) ion source is larger than that obtained with a duoplasmatron ion source at Argonne National Laboratory (ANL), but the bond lengths of H^+2 and H^+3obtained separately by ANL and by us with the two different ion sources are consistent with each other, which implies that there exists an ion source effect on the bond length of ^4HeH^+. The main reason why the 4^4HeH^+ bond lengths obtained by the two different ion sources are different is also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.29825109,20174006,20221402,20374015,and Two-Base Grant)the Key Grant of Chinese Ministry of Education(Grant No.305004)+2 种基金the Award Foundation for Young Teachers from the Ministry of Education of China,973 Project(Grant No.G1999054306-03)863 Project(Grant No.2004AA215170)the Science and Technology Developing Foundation of Shanghai(Grant No.04JC14019).
文摘Free radical polymerization and living ion polymerization have been simulated via the dynamic Monte Carlo method with the bond-fluctuation model in this paper. The polymeriza-tion-related parameters such as conversion of monomers, degree of polymerization, average molecular weight and its distribution are obtained by statistics. The simulation outputs are con-sistent with the corresponding theoretical predictions. The scaling relationships of the coil size versus chain length are also confirmed at different volume fractions. Furthermore, the effect of diffusion on polymerization is revealed preliminarily in our simulation. Hence the simulation ap-proach has been proven to be feasible to investigate polymerization reactions with the advan-tages that configuration and diffusion of polymer chains can be examined together with polym-erization kinetics.
文摘Porous FeS nanofibers with numerous nanovoids for use as anode materials for sodium-ion batteries were prepared by electrospinning and subsequent sulfidation. The post-treatment of the as-spun Fe(acac)3-polyacrylonitrile composite nanofibers in an air atmosphere yielded hollow Fe2O3 nanofibers due to Ostwald ripening. The ultrafine Fe2O3 nanocrystals formed at the center of the fiber diffused toward the outside of the fiber via Ostwald ripening. On sulfidation, the Fe2O3 hollow nanofibers were transformed into porous FeS nanofibers, which contained numerous nanovoids. The formation of porosity in the FeS nanofibers was driven by nanoscale Kirkendall diffusion. The porous FeS nanofibers were very structurally stable and had superior sodium-ion storage properties compared with the hollow Fe2O3 nanofibers. The discharge capacities of the porous FeS nanofibers for the Ist and 150th cycles at a current density of 500 mA.g-1 were 561 and 592 mA.h-g-1, respectively. The FeS nanofibers had final discharge capacities of 456, 437, 413, 394, 380, and 353 mA-h.g-1 at current densities of 0.2, 0.5, 1.0, 2.0, 3.0, and 5.0 A.g-1, respectively.
基金The Guangdong Province Education Department under contract No.GCZX-A0909the Guangdong Province Ocean and Fisheries Science & Technology Extension Project under contract No.20120980+1 种基金the Guangdong Province Industry-University-Science Partnership Project under contract No.20110908the Science&Technology Project of Huaiyin Normal University under contract No.WH0031
文摘Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
基金the National Natural Science Foundation of China! No.196O5005)
文摘To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.
基金supported by the National Natural Science Foundation of China(Grant Nos.51225204 and 21303222)the Shandong Taishan Scholarship,China+1 种基金the Ministry of Science and Technology,China(Grant No.2012CB932900)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)
文摘Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.
基金Supported by the Fund from Key Laboratory of Beam Technology and Material Modification of Ministry of Education(201123)
文摘[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.
基金supported by the National Natural Science Foundation of China(Nos.11690041,11805244,and 11675233)the Opening Project of Science and Technology on Reliability Physics and Application Technology of the Electronic Component Laboratory(No.ZHD 201604)
文摘Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.