The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo...The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.展开更多
Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scal...Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scale application.Here,a facile template method is utilized to synthesize boron doping carbon nanobubbles(BCNBs).The incorporation of boron into the carbon structure introduces abundant defective sites and improves conductivity,facilitating both the intercalation-controlled and capacitivecontrolled capacities.Moreover,theoretical calculation proves that boron doping can effectively improve the conductivity and facilitate electrochemical reversibility in PIBs.Correspondingly,the designed BCNBs anode delivers a high specific capacity(464 mAh g^(-1)at 0.05 A g^(-1))with an extraordinary rate performance(85.7 mAh g^(-1)at 50 A g^(-1)),and retains a considerable capacity retention(95.2%relative to the 100th charge after 2000 cycles).Besides,the strategy of pre-forming stable artificial inorganic solid electrolyte interface effectively realizes high initial coulombic efficiency of 79.0%for BCNBs.Impressively,a dual-carbon potassium-ion capacitor coupling BCNBs anode displays a high energy density(177.8 Wh kg^(-1)).This work not only shows great potential for utilizing heteroatom-doping strategy to boost the potassium ion storage but also paves the way for designing high-energy/power storage devices.展开更多
We fabricated sulfur and nitrogen codoped cyanoethyl cellulose-derived carbons(SNCCs)with state-of-the-art electrochemical performance for potassium ion battery(PIB)and potassium ion capacitor(PIC)anodes.At 0.2,0.5,1,...We fabricated sulfur and nitrogen codoped cyanoethyl cellulose-derived carbons(SNCCs)with state-of-the-art electrochemical performance for potassium ion battery(PIB)and potassium ion capacitor(PIC)anodes.At 0.2,0.5,1,2,5,and 10 A g−1,the SNCC shows reversible capacities of 369,328,249,208,150,and 121 mA h g−1,respectively.Due to a high packing density of 1.01 g cm^(−3),the volumetric capacities are also uniquely favorable,being 373,331,251,210,151,and 122 mA h cm^(−3)at these currents,respectively.SNCC also shows promising initial Coulombic efficiency of 69.0%and extended cycling stability with 99.8%capacity retention after 1000 cycles.As proof of principle,an SNCC-based PIC is fabricated and tested,achieving 94.3Wh kg^(−1)at 237.5Wkg^(−1)and sustaining over 6000 cycles at 30 A g−1 with 84.5%retention.The internal structure of S and N codoped SNCC is based on highly dilated and defective graphene sheets arranged into nanometer-scale walls.Using a baseline S-free carbon for comparison(termed NCC),the role of S doping and the resultant dilated structure was elucidated.According to galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses,as well as COMSOL simulations,this structure promotes rapid solid-state diffusion of potassium ions and a solid electrolyte interphase that is stable during cycling.X-ray diffraction was used to probe the ion storage mechanisms in SNCC,establishing the role of reversible potassium intercalation and the presence of KC36,KC24,and KC8 phases at low voltages.展开更多
Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the development of the future potassium-ion batteries(PIBs).In t...Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the development of the future potassium-ion batteries(PIBs).In this work,we synthesized reduced graphene oxide doping flower-like Fe_(7)S_(8) nanosheets electrode materials using one-step hydrothermal strategy.The rGO@Fe_(7)S_(8) composite is composed of homogeneous Fe_(7)S_(8) and reduced graphene oxide thin nanosheets.This unique structure not only promotes the penetration of electrolyte and increases the conductive of the pure Fe_(7)S_(8) electrode materials,but also relieves the volume expansion of K^(+) during charge/discharge process.When applied this interesting anode electrode for PIBs,the rGO@Fe_(7)S_(8) exhibits excellent electrochemical performance.It delivers a high reversible specific capacity of 445 mAh g^(-1) at 50 mA g^(-1),excellent rate performance(284 mAhg^(-1)at 500 mA g^(-1) and 237 mAh g^(-1) at 1000 mA g^(-1)),and a high cycling stability at 100 mA g^(-1)(maintained 355 mAh g^(-1) after 300 cycles).展开更多
Up to now,three kinds of ion-storage mechanisms are summarized towards anode materials in lithium/sodium-ion batteries,but they have low capacity and poor cyclic performance.Therefore,it is necessary to develop a new ...Up to now,three kinds of ion-storage mechanisms are summarized towards anode materials in lithium/sodium-ion batteries,but they have low capacity and poor cyclic performance.Therefore,it is necessary to develop a new approach to optimize ion storage.Herein,we report an adsorption/desorption storage route through engineering electronic structure of cation-deficient Ti_(1-x)O_(2)nanosheets.Ti_(1-x)O_(2)nanosheets indeed exhibit higher capacity(332.1 mA h g^(-1)vs.137.7 mA h g^(-1)for LIBs,195.7 mA h g^(-1)vs.111 mA h g^(-1)for SIBs),and more stable cyclic performance(296 mA h g^(-1)vs.99 mA h g^(-1)for LIBs,178.1 mA h g^(-1)vs.80.2 mA h g^(-1)for SIBs after 100 cycles)at 0.1 A g^(-1)than TiO_(2)nanosheets.Kinetics analysis and density functional theory(DFT)calculations reveal that electronic structures of vacancy within Ti_(1-x)O_(2) nanosheets encourage a novel adsorption-desorption storage route.These results highlight the benefits of the engineered electronic structures within electrode material and implement novel ion-storage mechanism towards broad energy storage applications.展开更多
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ...Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.展开更多
The design of anode materials with a high specific capacity,high cyclic stability,and superior rate performance is required for the practical applications of sodium-ion batteries(SIBs).In this regard,we introduce in t...The design of anode materials with a high specific capacity,high cyclic stability,and superior rate performance is required for the practical applications of sodium-ion batteries(SIBs).In this regard,we introduce in this work a facile,low-cost and scalable method for the synthesis of nanocomposites of amorphous molybdenum sulfide(a-MoS_(x))and hierarchical porous carbon and have systematically investigated their performance for sodium ion storage.In the synthesis,ammonium molybdate tetrahydrate and thioacetamide are used as molybdenum and sulfur sources,respectively,with abundant corn starch as the carbon source and KOH as an activation agent.A simple pyrolysis of their mixtures leads to the formation of nanocomposites with a-MoS_(x)embedded within a hierarchical porous carbon(MoS_(x)@HPC),which are featured with a high surface area of up to 518.4 m^(2) g^(-1)and hierarchical pores ranging from micropores to macropores.It has also been shown that the annealing of MoS_(x)@HPC results in the formation of crystalline MoS_(2)nanosheets anchored in the hierarchical porous carbon matrix(MoS_(2)@HPC).The as-prepared nanocomposite MoS_(x)@HPC1 at an optimum carbon content of 32 wt%delivers a high specific sodium storage capacity of 599 mAh g^(-1)at 0.2 A g^(-1)and a high-rate performa nce with a retained capacity of 289 mAh g^(-1)at 5 A g^(-1).A comparison of the electrochemical performances of MoS_(x)@HPC and MoS_(2)@HPC demonstrates the superior specific capacity,rate performance,and charge transfer kinetics of the former,highlighting the unique advantageous role of amorphous MoS_(x)relative to crystalline MoS_(2).展开更多
The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we r...The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we report redox charge transfer kinetics and reversibility of VO_(2)(B) nanorod electrodes in both aqueous and organic electrolytes for NIS.The assynthesized VO_(2)(B) nanorods show the reversible redox reaction with the higher specific and rate capacitances at high current density in aqueous electrolytes than in organic electrolytes.Temperature-dependent impedance measurements demonstrate the more facile interfacial charge transfer of Na ions into VO_(2)(B) nanorods in aqueous electrolytes.The reversible evolution in oxidation state and chemical composition of VO_(2)(B) nanorods is observed in aqueous electrolytes,as confirmed by ex situ XRD and ex situ X-ray photoelectron spectroscopy analyses.Given by the facile and reversible pseudocapacitive feature,the electrochemical performances of VO_(2)(B) nanorods are further improved by constructing the hierarchical structure of the reduced graphene oxide-VO_(2) composite for aqueous Na+ion storage.展开更多
Single crystals of a bismuth-based coordination polymer(CP)with carboxyl-thiol ligands,[Bi(C_(8)H_(2)O_(4)S_(2))(C2H8N)]n(Bi-DSBDC-DMA,DMBDC=2,5-disulfur-1,4-dicarboxylate,DMA=dimethylamine),have been successfully syn...Single crystals of a bismuth-based coordination polymer(CP)with carboxyl-thiol ligands,[Bi(C_(8)H_(2)O_(4)S_(2))(C2H8N)]n(Bi-DSBDC-DMA,DMBDC=2,5-disulfur-1,4-dicarboxylate,DMA=dimethylamine),have been successfully synthesized.X-ray diffraction analysis reveals that Bi-DSBDC-DMA possesses a layered structure,with two-dimensional(2D)Bi-DSBDC networks alternating with layers composed of dimethylamine ions.This material demonstrates semiconducting properties,featuring an optical bandgap of 2.2 eV and an electrical conductivity of 2×10^(-8) S/cm.Furthermore,electrodes based on this material exhibit a capacity of 250 mAh/g after 200 cycles for lithium-ion storage.展开更多
Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the develop...Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.展开更多
A novel hybrid,highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide(Co3S4/CoMo2S4@rGO),is reported as anode for lithium and sodium ion storage.The hybrid is synthesized by one-step hydrotherma...A novel hybrid,highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide(Co3S4/CoMo2S4@rGO),is reported as anode for lithium and sodium ion storage.The hybrid is synthesized by one-step hydrothermal method but exhibits excellent lithium and sodium storage performances.The as-synthesized Co3S4/CoMo2S4@rGO presents reversible capacity of 595.4 mA·h·g^−1 and 408.8 mA·h·g^−1 after 100 cycles at a current density of 0.2 A·g^−1 for lithium and sodium ion storages,respectively.Such superior performances are attributed to the unique composition and structure of Co3S4/CoMo2S4@rGO.The rGO provides a good electronically conductive network and ensures the formation of spinel Co3S4/CoMo2S4 nanoparticles,the Co3S4/CoMo2S4 nanoparticles provide large reaction surface for lithium and sodium intercalation/deintercalation,and the spinel structure allows fast lithium and sodium ion diffusion in three dimensions.展开更多
1 Results Performance of lithium-ion batteries, electrochemical capacitors, and other electric-energy storage devices is not only determined simply by macroscopic chemical composition of their electrode, but also stro...1 Results Performance of lithium-ion batteries, electrochemical capacitors, and other electric-energy storage devices is not only determined simply by macroscopic chemical composition of their electrode, but also strongly affected by shape and size of the active materials. Nanostructured materials are distinguished from conventional polycrystalline materials by the nanometer size of the structural units that compose them, and they often exhibit properties that are drastically different from the conventi...展开更多
It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and ev...It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and even robots and tanks.However,in the pursuit of cost-effective,safety-reliable,and highly efficient energy storage technologies,researchers are developing展开更多
Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appr...Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications.展开更多
Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the...Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.展开更多
Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hamp...Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.展开更多
As an effective and competitive supplement to the commercialized lithium ion batteries(LIBs),sodium ion batteries(SIBs)have been receiving increasing attention in recent years due to lower cost,richer content,and broa...As an effective and competitive supplement to the commercialized lithium ion batteries(LIBs),sodium ion batteries(SIBs)have been receiving increasing attention in recent years due to lower cost,richer content,and broader distribution of sodium[1–7].Sodium has similar electrochemical properties to lithium,and thus the concepts for the preparation of electrode materials for SIBs can be borrowed from LIBs[8,9].展开更多
The pulsed electron beam rf ion storage system is used to study neon ions electron transfer, The rate coefficients for electron transfer of the neon ions with the neon gas are measured, the results are better than tho...The pulsed electron beam rf ion storage system is used to study neon ions electron transfer, The rate coefficients for electron transfer of the neon ions with the neon gas are measured, the results are better than those in other ion storage system.展开更多
Prussian blue analogues(PBAs)with the 3D open framework are regarded as promising cathode candidates for aqueous Zinc ion batteries(ZIBs).Among various PBAs,nickel hexacyanoferrate(NiHCF)has attracted considerable att...Prussian blue analogues(PBAs)with the 3D open framework are regarded as promising cathode candidates for aqueous Zinc ion batteries(ZIBs).Among various PBAs,nickel hexacyanoferrate(NiHCF)has attracted considerable attention because of its high operating voltage and economic merit.However,the cyclability of NiHCF is unsatisfactory due to poor structural stability during Zn^(2+) ions insertion/deinsertion.Moreover,the ion storage mechanism of NiHCF in aqueous electrolytes has not been fully revealed yet.Herein,high-crystallinity NiHCF(HC-NiHCF)microcubes with improved structural stability and larger crystal plane spacing are synthesized.For the first time,highly reversible Zn2+ions and Na+ions co-insertion/extraction are achieved for the HC-NiHCF microcubes in mixed aqueous electrolyte,as evidenced by various observations including two separated discharge plateaus and sequential changes of Na 1s and Zn 2p signals in ex-situ X-ray photoelectron spectroscopy(XPS).As a result,a high specific capacity of 73.9 mAh g^(−1) is obtained for the HC-NiHCF microcubes at 0.1 A g−1,combined with enhanced cycle stability(75%vs.16.4%)over 1000 cycles at 2 A g^(−1).The reversible Zn^(2+) ions and Na+ions co-insertion in HC-NiHCF microcubes reveals a new ion storage mechanism of Ni-based PBAs in aqueous electrolytes.展开更多
Aqueous rechargeable ammonium-ion batteries(AIBs)have drew considerable attention because of their capacity for high rates,low cost,and high safety.However,developing desired electrodes requiring stable structure in t...Aqueous rechargeable ammonium-ion batteries(AIBs)have drew considerable attention because of their capacity for high rates,low cost,and high safety.However,developing desired electrodes requiring stable structure in the aqueous fast ammoniation/de-ammoniation becomes urgent.Herein,an ammonium ion full battery using Cu_(3)[Fe(CN)_(6)]_(2)(CuHCF)acting to be a cathode and barium vanadate(BVO)acting to be an anode is described.Its excellent electrochemical behavior of Prussian blue analogs and the perfectly matched lattice structure of NH_(4)^(+)is expected.And the open structure of vanadium compounds satisfies the fast ammoniation/de-ammoniation of NH4+is also achieved.As a result of these synergistic effects,the BVO//CuHCF full cell retains 80.5 percent of its capacity following 1000 cycling.These achievements provide new ideas for developing low-cost and long-life AIBs.展开更多
基金The Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource of Xinjiang University(KFKT2021004)。
文摘The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.
基金supported by the National Natural Science Foundation of China(No.22179123 and 21471139)the Shandong Provincial Natural Science Foundation,China(ZR2020ME038)the Fundamental Research Funds for the Central Universities(No.202262010 and 201941010)
文摘Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scale application.Here,a facile template method is utilized to synthesize boron doping carbon nanobubbles(BCNBs).The incorporation of boron into the carbon structure introduces abundant defective sites and improves conductivity,facilitating both the intercalation-controlled and capacitivecontrolled capacities.Moreover,theoretical calculation proves that boron doping can effectively improve the conductivity and facilitate electrochemical reversibility in PIBs.Correspondingly,the designed BCNBs anode delivers a high specific capacity(464 mAh g^(-1)at 0.05 A g^(-1))with an extraordinary rate performance(85.7 mAh g^(-1)at 50 A g^(-1)),and retains a considerable capacity retention(95.2%relative to the 100th charge after 2000 cycles).Besides,the strategy of pre-forming stable artificial inorganic solid electrolyte interface effectively realizes high initial coulombic efficiency of 79.0%for BCNBs.Impressively,a dual-carbon potassium-ion capacitor coupling BCNBs anode displays a high energy density(177.8 Wh kg^(-1)).This work not only shows great potential for utilizing heteroatom-doping strategy to boost the potassium ion storage but also paves the way for designing high-energy/power storage devices.
基金Funding information National Natural Science Foundation of China,Grant/Award Numbers:22179123,21471139Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020ME038+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:201941010National Science Foundation,Division of Materials Research,Grant/Award Number:1938833。
文摘We fabricated sulfur and nitrogen codoped cyanoethyl cellulose-derived carbons(SNCCs)with state-of-the-art electrochemical performance for potassium ion battery(PIB)and potassium ion capacitor(PIC)anodes.At 0.2,0.5,1,2,5,and 10 A g−1,the SNCC shows reversible capacities of 369,328,249,208,150,and 121 mA h g−1,respectively.Due to a high packing density of 1.01 g cm^(−3),the volumetric capacities are also uniquely favorable,being 373,331,251,210,151,and 122 mA h cm^(−3)at these currents,respectively.SNCC also shows promising initial Coulombic efficiency of 69.0%and extended cycling stability with 99.8%capacity retention after 1000 cycles.As proof of principle,an SNCC-based PIC is fabricated and tested,achieving 94.3Wh kg^(−1)at 237.5Wkg^(−1)and sustaining over 6000 cycles at 30 A g−1 with 84.5%retention.The internal structure of S and N codoped SNCC is based on highly dilated and defective graphene sheets arranged into nanometer-scale walls.Using a baseline S-free carbon for comparison(termed NCC),the role of S doping and the resultant dilated structure was elucidated.According to galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses,as well as COMSOL simulations,this structure promotes rapid solid-state diffusion of potassium ions and a solid electrolyte interphase that is stable during cycling.X-ray diffraction was used to probe the ion storage mechanisms in SNCC,establishing the role of reversible potassium intercalation and the presence of KC36,KC24,and KC8 phases at low voltages.
基金financially supported by the National Natural Science Foundation of China(No.21872045)。
文摘Finding easy-to-operate strategy to obtain anode material with well-designed structure and excellent electrochemical performance is necessary to promote the development of the future potassium-ion batteries(PIBs).In this work,we synthesized reduced graphene oxide doping flower-like Fe_(7)S_(8) nanosheets electrode materials using one-step hydrothermal strategy.The rGO@Fe_(7)S_(8) composite is composed of homogeneous Fe_(7)S_(8) and reduced graphene oxide thin nanosheets.This unique structure not only promotes the penetration of electrolyte and increases the conductive of the pure Fe_(7)S_(8) electrode materials,but also relieves the volume expansion of K^(+) during charge/discharge process.When applied this interesting anode electrode for PIBs,the rGO@Fe_(7)S_(8) exhibits excellent electrochemical performance.It delivers a high reversible specific capacity of 445 mAh g^(-1) at 50 mA g^(-1),excellent rate performance(284 mAhg^(-1)at 500 mA g^(-1) and 237 mAh g^(-1) at 1000 mA g^(-1)),and a high cycling stability at 100 mA g^(-1)(maintained 355 mAh g^(-1) after 300 cycles).
基金supported financially by the National Natural Science Foundation of China(Grant Nos.91961125 and 21905019)“Key Program for International S&T Cooperation Projects of China”from the Ministry of Science and Technology of China(Grant No.2018YFE0124600)+2 种基金“the Fundamental Research Funds for the Central Universities”(Grant No.2018JBZ107)the Chemistry and Chemical Engineering Guangdong Laboratory(Grant No.1932004)support from the“Excellent One Hundred”project of Beijing Jiaotong University。
文摘Up to now,three kinds of ion-storage mechanisms are summarized towards anode materials in lithium/sodium-ion batteries,but they have low capacity and poor cyclic performance.Therefore,it is necessary to develop a new approach to optimize ion storage.Herein,we report an adsorption/desorption storage route through engineering electronic structure of cation-deficient Ti_(1-x)O_(2)nanosheets.Ti_(1-x)O_(2)nanosheets indeed exhibit higher capacity(332.1 mA h g^(-1)vs.137.7 mA h g^(-1)for LIBs,195.7 mA h g^(-1)vs.111 mA h g^(-1)for SIBs),and more stable cyclic performance(296 mA h g^(-1)vs.99 mA h g^(-1)for LIBs,178.1 mA h g^(-1)vs.80.2 mA h g^(-1)for SIBs after 100 cycles)at 0.1 A g^(-1)than TiO_(2)nanosheets.Kinetics analysis and density functional theory(DFT)calculations reveal that electronic structures of vacancy within Ti_(1-x)O_(2) nanosheets encourage a novel adsorption-desorption storage route.These results highlight the benefits of the engineered electronic structures within electrode material and implement novel ion-storage mechanism towards broad energy storage applications.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.51673123 and No.22005346)the National Key R&D Program of China(No.2017YFE0111500)+1 种基金the State Key Laboratory of Polymer Materials Engineering(Grant No.:sklpme2020-1-02)Financial support provided by the Fundamental Research Funds for the Central Universities(No.YJ202118)。
文摘Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.
基金financially supported by grants from the Natural Science and Engineering Research Council of Canada(Grant#RGPIN-2020-05546)。
文摘The design of anode materials with a high specific capacity,high cyclic stability,and superior rate performance is required for the practical applications of sodium-ion batteries(SIBs).In this regard,we introduce in this work a facile,low-cost and scalable method for the synthesis of nanocomposites of amorphous molybdenum sulfide(a-MoS_(x))and hierarchical porous carbon and have systematically investigated their performance for sodium ion storage.In the synthesis,ammonium molybdate tetrahydrate and thioacetamide are used as molybdenum and sulfur sources,respectively,with abundant corn starch as the carbon source and KOH as an activation agent.A simple pyrolysis of their mixtures leads to the formation of nanocomposites with a-MoS_(x)embedded within a hierarchical porous carbon(MoS_(x)@HPC),which are featured with a high surface area of up to 518.4 m^(2) g^(-1)and hierarchical pores ranging from micropores to macropores.It has also been shown that the annealing of MoS_(x)@HPC results in the formation of crystalline MoS_(2)nanosheets anchored in the hierarchical porous carbon matrix(MoS_(2)@HPC).The as-prepared nanocomposite MoS_(x)@HPC1 at an optimum carbon content of 32 wt%delivers a high specific sodium storage capacity of 599 mAh g^(-1)at 0.2 A g^(-1)and a high-rate performa nce with a retained capacity of 289 mAh g^(-1)at 5 A g^(-1).A comparison of the electrochemical performances of MoS_(x)@HPC and MoS_(2)@HPC demonstrates the superior specific capacity,rate performance,and charge transfer kinetics of the former,highlighting the unique advantageous role of amorphous MoS_(x)relative to crystalline MoS_(2).
基金supported by both the Technology Innovation Program(20004958,Development of ultra-high performance supercapacitor and high power module)funded by the Ministry of Trade,Industry and Energy(MOTIE)Creative Materials Discovery Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2018M3D1A1058744).
文摘The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we report redox charge transfer kinetics and reversibility of VO_(2)(B) nanorod electrodes in both aqueous and organic electrolytes for NIS.The assynthesized VO_(2)(B) nanorods show the reversible redox reaction with the higher specific and rate capacitances at high current density in aqueous electrolytes than in organic electrolytes.Temperature-dependent impedance measurements demonstrate the more facile interfacial charge transfer of Na ions into VO_(2)(B) nanorods in aqueous electrolytes.The reversible evolution in oxidation state and chemical composition of VO_(2)(B) nanorods is observed in aqueous electrolytes,as confirmed by ex situ XRD and ex situ X-ray photoelectron spectroscopy analyses.Given by the facile and reversible pseudocapacitive feature,the electrochemical performances of VO_(2)(B) nanorods are further improved by constructing the hierarchical structure of the reduced graphene oxide-VO_(2) composite for aqueous Na+ion storage.
基金supported by the Research Projects of Department of Education of Guangdong Province(No.2023KTSCX319)the National Natural Science Foundation of China(No.92372114).
文摘Single crystals of a bismuth-based coordination polymer(CP)with carboxyl-thiol ligands,[Bi(C_(8)H_(2)O_(4)S_(2))(C2H8N)]n(Bi-DSBDC-DMA,DMBDC=2,5-disulfur-1,4-dicarboxylate,DMA=dimethylamine),have been successfully synthesized.X-ray diffraction analysis reveals that Bi-DSBDC-DMA possesses a layered structure,with two-dimensional(2D)Bi-DSBDC networks alternating with layers composed of dimethylamine ions.This material demonstrates semiconducting properties,featuring an optical bandgap of 2.2 eV and an electrical conductivity of 2×10^(-8) S/cm.Furthermore,electrodes based on this material exhibit a capacity of 250 mAh/g after 200 cycles for lithium-ion storage.
基金supported by the National Research Foundation of Korea grant funded by the Korea government(MSIT)(NRF-2020R1A3B2079803)the computational time provided by KISTI(KSC-2023-CRE-0166).
文摘Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.
基金supported by the National Natural Science Foundation of China(No.21872058)the Key Project of Science and Technology in Guangdong Province(No.2017A010106006).
文摘A novel hybrid,highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide(Co3S4/CoMo2S4@rGO),is reported as anode for lithium and sodium ion storage.The hybrid is synthesized by one-step hydrothermal method but exhibits excellent lithium and sodium storage performances.The as-synthesized Co3S4/CoMo2S4@rGO presents reversible capacity of 595.4 mA·h·g^−1 and 408.8 mA·h·g^−1 after 100 cycles at a current density of 0.2 A·g^−1 for lithium and sodium ion storages,respectively.Such superior performances are attributed to the unique composition and structure of Co3S4/CoMo2S4@rGO.The rGO provides a good electronically conductive network and ensures the formation of spinel Co3S4/CoMo2S4 nanoparticles,the Co3S4/CoMo2S4 nanoparticles provide large reaction surface for lithium and sodium intercalation/deintercalation,and the spinel structure allows fast lithium and sodium ion diffusion in three dimensions.
文摘1 Results Performance of lithium-ion batteries, electrochemical capacitors, and other electric-energy storage devices is not only determined simply by macroscopic chemical composition of their electrode, but also strongly affected by shape and size of the active materials. Nanostructured materials are distinguished from conventional polycrystalline materials by the nanometer size of the structural units that compose them, and they often exhibit properties that are drastically different from the conventi...
文摘It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and even robots and tanks.However,in the pursuit of cost-effective,safety-reliable,and highly efficient energy storage technologies,researchers are developing
基金funded by the National Natural Science Foundation of China(No.51902165)the Natural Science Foundation of Jiangsu Province(No.BK20170917)+2 种基金the Scientific Research Foundation for High-Level Talents of Nanjing Forestry University(No.GXL2016023)the Program of High-Level Talents in Six Industries of Jiangsu Province(No.XCL-040)the Jiangsu Specially-Appointed Professor Program。
文摘Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications.
基金supported by the National Natural Science Foundation of China (No.51072130 and 51502045)the Australian Research Council (ARC) through Discovery Early Career Researcher Award (DECRA, No.DE170100871) program。
文摘Due to the sufficient ion diffusion channels provided by the large interlayer spacing, layered silicates are widely considered as potential anode materials for lithium ion and sodium ion batteries. However, due to the poor electronic conductivity, the application of layered silicates for electrochemical energy storage has been greatly limited. Carbon nanotube(CNT) film has excellent electrical conductivity and a unique interconnected network, making it an ideal matrix for composite electrochemical material. We herein report a CNT@nickel silicate composite film(CNT@NiSiO) fabricated by a SiO2-mediated hydrothermal conversion process, for sodium storage with excellent electrochemical properties. The obtained composite possesses a cladding structure with homogeneous nanosheets as the outermost and CNT film as the inner network matrix, providing abundant ion diffusion channels, high electronic conductivity, and good mechanical flexibility. Due to these merits, this material possesses an excellent electrochemical performance for sodium storage, including a high specific capacity up to 390 mAh g-1 at 50 mA g-1, good rate performance up to 205 mAh g-1 at 500 mA g-1, and excellent cycling stability. On this basis, this work would bring a promising material for various energy storage devices and other emerging applications.
基金the National Natural Science Foundation of Hubei Province(Grant No.2019CFB110)the fund of the Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials(Grant No.1-KF-2019).
文摘Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0207202)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_1058)。
文摘As an effective and competitive supplement to the commercialized lithium ion batteries(LIBs),sodium ion batteries(SIBs)have been receiving increasing attention in recent years due to lower cost,richer content,and broader distribution of sodium[1–7].Sodium has similar electrochemical properties to lithium,and thus the concepts for the preparation of electrode materials for SIBs can be borrowed from LIBs[8,9].
文摘The pulsed electron beam rf ion storage system is used to study neon ions electron transfer, The rate coefficients for electron transfer of the neon ions with the neon gas are measured, the results are better than those in other ion storage system.
基金supported by the Macao Science and Technology Development Fund for funding(File Nos.FDCT-0057/2019/A1,0092/2019/A2,0035/2019/AMJ,0013/2021/AMJ,and 0082/2022/A2)and the Startup grant(No.SRG2018–00140-IAPME)Multi-Year research grant(Nos.MYRG2020–00283-IAPME and MYRG2022–00266-IAPME)from the Research&Development Office at University of Macao.We also acknowledge the fund of the National Nature Science Foundation of China(Grant Nos.52202328,21875040,and。
文摘Prussian blue analogues(PBAs)with the 3D open framework are regarded as promising cathode candidates for aqueous Zinc ion batteries(ZIBs).Among various PBAs,nickel hexacyanoferrate(NiHCF)has attracted considerable attention because of its high operating voltage and economic merit.However,the cyclability of NiHCF is unsatisfactory due to poor structural stability during Zn^(2+) ions insertion/deinsertion.Moreover,the ion storage mechanism of NiHCF in aqueous electrolytes has not been fully revealed yet.Herein,high-crystallinity NiHCF(HC-NiHCF)microcubes with improved structural stability and larger crystal plane spacing are synthesized.For the first time,highly reversible Zn2+ions and Na+ions co-insertion/extraction are achieved for the HC-NiHCF microcubes in mixed aqueous electrolyte,as evidenced by various observations including two separated discharge plateaus and sequential changes of Na 1s and Zn 2p signals in ex-situ X-ray photoelectron spectroscopy(XPS).As a result,a high specific capacity of 73.9 mAh g^(−1) is obtained for the HC-NiHCF microcubes at 0.1 A g−1,combined with enhanced cycle stability(75%vs.16.4%)over 1000 cycles at 2 A g^(−1).The reversible Zn^(2+) ions and Na+ions co-insertion in HC-NiHCF microcubes reveals a new ion storage mechanism of Ni-based PBAs in aqueous electrolytes.
基金Joint Funds of the National Natural Science Foundation of China(No.U22A20140)the Independent Cultivation Program of Innovation Team of Ji'nan City(No.2019GXRC011)the Natural Science Foundation of Shandong Province,China(No.ZR2021MA073)。
文摘Aqueous rechargeable ammonium-ion batteries(AIBs)have drew considerable attention because of their capacity for high rates,low cost,and high safety.However,developing desired electrodes requiring stable structure in the aqueous fast ammoniation/de-ammoniation becomes urgent.Herein,an ammonium ion full battery using Cu_(3)[Fe(CN)_(6)]_(2)(CuHCF)acting to be a cathode and barium vanadate(BVO)acting to be an anode is described.Its excellent electrochemical behavior of Prussian blue analogs and the perfectly matched lattice structure of NH_(4)^(+)is expected.And the open structure of vanadium compounds satisfies the fast ammoniation/de-ammoniation of NH4+is also achieved.As a result of these synergistic effects,the BVO//CuHCF full cell retains 80.5 percent of its capacity following 1000 cycling.These achievements provide new ideas for developing low-cost and long-life AIBs.