The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. Th...The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.展开更多
An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-o...An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.展开更多
Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion c...Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion coefficient severely limit its performance at high rate. Herein, we have constructed in situ clusters of porous lithium titanate nanoparticles on self-supporting carbon nanotube film by combining iron oxide hard template method and F127 soft template method. Due to the nano-structured particle size and the penetrating lithium ion transmission channel, a greatly improved lithium ion diffusion coefficient has been achieved, which brings significantly better electrochemical performance than dense lithium titanate. By assembling with a durable graphene foam cathode, a lithium-ion capacitor with an energy density of up to 101.8 Wh kg-1 was realized(at a power density of 436.1 W kg-1). And its capacitance retention reaches 84.8% after 5000 cycles. With such an alluring result, our work presents a novel lithium-ion capacitor system with practical application prospects.展开更多
Simulations of guiding of low-energy ions through a single nanocapillary in insulating polymers are reported. The nanocapillary has a diameter of 100 nm and a length of 10 μm. Different from previous work, in our sim...Simulations of guiding of low-energy ions through a single nanocapillary in insulating polymers are reported. The nanocapillary has a diameter of 100 nm and a length of 10 μm. Different from previous work, in our simulations a hyperbolic function is used to describe the decay of the charges deposited on the capillary surface. The present simulations reproduce the self-organized charge-up process occurring in the capillary. It is shown that lower-energy ions undergo more oscillations to get guiding equilibrium than those of higher-energy ions, resulting in a longer charging time, which is in good agreement with previous experimental results. Moreover, the experimentally observed mass independence of ion guiding is proved in our simulations. In particular, it is found that the maximum of the repulsive field within the capillary is independent of the ion energy as well as the tilt angle. To counterbalance the increasing of the transversal energy caused by increasing the tilt angle or incident energy, the effective length of the repulsive field is expanded in a self-organizing manner.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51278495,51174291)the Open Fund of Nation Engineering Laboratory for High Speed Railway Construction(No.HSR2013011)
文摘The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.
文摘An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.
基金the National Natural Science Foundation of China(51673064,21875065)International Science&Technology Cooperation Program of China(2016YFE0131200)Shanghai Municipality Research Project(15520720500)。
文摘Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion coefficient severely limit its performance at high rate. Herein, we have constructed in situ clusters of porous lithium titanate nanoparticles on self-supporting carbon nanotube film by combining iron oxide hard template method and F127 soft template method. Due to the nano-structured particle size and the penetrating lithium ion transmission channel, a greatly improved lithium ion diffusion coefficient has been achieved, which brings significantly better electrochemical performance than dense lithium titanate. By assembling with a durable graphene foam cathode, a lithium-ion capacitor with an energy density of up to 101.8 Wh kg-1 was realized(at a power density of 436.1 W kg-1). And its capacitance retention reaches 84.8% after 5000 cycles. With such an alluring result, our work presents a novel lithium-ion capacitor system with practical application prospects.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275238,11205225,and 11375034)
文摘Simulations of guiding of low-energy ions through a single nanocapillary in insulating polymers are reported. The nanocapillary has a diameter of 100 nm and a length of 10 μm. Different from previous work, in our simulations a hyperbolic function is used to describe the decay of the charges deposited on the capillary surface. The present simulations reproduce the self-organized charge-up process occurring in the capillary. It is shown that lower-energy ions undergo more oscillations to get guiding equilibrium than those of higher-energy ions, resulting in a longer charging time, which is in good agreement with previous experimental results. Moreover, the experimentally observed mass independence of ion guiding is proved in our simulations. In particular, it is found that the maximum of the repulsive field within the capillary is independent of the ion energy as well as the tilt angle. To counterbalance the increasing of the transversal energy caused by increasing the tilt angle or incident energy, the effective length of the repulsive field is expanded in a self-organizing manner.