The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distributio...The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distribution and discussion of dispersion relation and growth rate of twisted IA waves under various conditions is presented.In the domain of kinetic model,the twisted IA waves are characterized by Laguerre-Gaussian(LG) solutions,where plasma distribution function and electric field are decomposed into axial and azimuthal components.The plasma response function is obtained under paraxial approximations and investigated for threshold condition of instability growth rate with helical electric field structures.The impact of an extra electron specie on the instability is demonstrated through a comparison of twisted waves for single and double electron species.展开更多
The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been ...The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.展开更多
The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the ...The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the piecewise function perturbation form is new with great difference from the previous perturbation.Then,based on the piecewise function perturbation,a(3+1)-dimensional generalized modified Korteweg–de Vries Zakharov–Kuznetsov(mKdV-ZK)equation is derived for the first time,which is an extended form of the classical mKdV equation and the ZK equation.The(3+1)-dimensional generalized time-space fractional mKdV-ZK equation is constructed using the semi-inverse method and the fractional variational principle.Obviously,it is more accurate to depict some complex plasma processes and phenomena.Further,the conservation laws of the generalized time-space fractional mKdV-ZK equation are discussed.Finally,using the multi-exponential function method,the non-resonant multiwave solutions are constructed,and the characteristics of ion-acoustic waves are well described.展开更多
Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary wave...Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.展开更多
The one-dimensional quantum hydrodynamic (QHD) model for a three-specie quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic wave (DIAW). It is found that owing to the quantum ef...The one-dimensional quantum hydrodynamic (QHD) model for a three-specie quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic wave (DIAW). It is found that owing to the quantum effects, the dynamics of small but finite amplitude quantum dust ion-acoustic waves (QDIA) is governed by a deformed Korteweg-de Vries equation (dK-dV). The latter admits compressive as well as rarefactive stationary QDIA solitary wave solution. In the fully quantum case, the QDIA soliton experiences a spreading which becomes more significant as electron depletion is enhanced.展开更多
Nonlinear propagation of dust-ion-acoustic waves in a degenerate dense plasma (with the constituents being degenerate, for both the limits non-relativistic or ultra-relativistic) have been investigated by the reductiv...Nonlinear propagation of dust-ion-acoustic waves in a degenerate dense plasma (with the constituents being degenerate, for both the limits non-relativistic or ultra-relativistic) have been investigated by the reductive perturbation method. The Korteweg de-Vries (K-dV) equation and Burger’s equation have been derived, and the numerical solutions of those equations have been analyzed to identify the basic features of electrostatic solitary and shock structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs, have been briefly discussed.展开更多
The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dus...The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.展开更多
Nonlinear solitary waves are investigated for a plasma system at the night side of Titan's ionosphere.The plasma model consists of three positive ions,namely C2H5^+,HCNH^+,and C3H5^+,as well as Maxwellian electron...Nonlinear solitary waves are investigated for a plasma system at the night side of Titan's ionosphere.The plasma model consists of three positive ions,namely C2H5^+,HCNH^+,and C3H5^+,as well as Maxwellian electrons.The basic set of fluid equations is reduced to a Korteweg de-Vries(KdV)equation and linear inhomogeneous higher order KdV(LIHO-KdV)equation.The solitary wave solutions of both equations are obtained using a renormalization method.The solitary waves'existence region and the wave profile are investigated,and their dependences on the plasma parameters at the night side of Titan's ionosphere are examined.The solitary waves'phase velocities are subsonic or supersonic,and the propagating pulses are usually positive.The effect of higher-order corrections on the perturbation theory is investigated.It is found that the higher-order contribution makes the amplitude slightly taller,which is suitable for describing the solitary waves when the amplitude augments.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri...We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ...The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.展开更多
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
Terahertz(THz)waves,also known as T-rays,encompass frequencies ranging from 0.1 to 10 THz and possess unique properties that render them applicable in various biomedical domains,particularly in neurobiology[1].Synapti...Terahertz(THz)waves,also known as T-rays,encompass frequencies ranging from 0.1 to 10 THz and possess unique properties that render them applicable in various biomedical domains,particularly in neurobiology[1].Synaptic transmission,the process through which signals propagate between neurons at synapses,is pivotal for brain function and information processing.展开更多
The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating...The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.展开更多
This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl...This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.展开更多
We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr...We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.展开更多
In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and rad...In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and radioactive decay are sources of such waves. It is also shown that a gravitomagnetic wave propagating in a certain direction can be understood as the macroscopic manifestation of a spatial sequence of informatons whose characteristic angle is fluctuating along that—with the speed of light—speeding “train”. Finally, it is shown that gravitomagnetic waves transport energy in the form of packages carried by informatons. These entities are called “gravitons”.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard re...Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.展开更多
文摘The ion-acoustic(IA) mode exhibiting various orbital angular momentum(OAM) states is examined in a plasma with drifting electrons.The constituent plasma species are modeled with a non-gyrotropic Maxwellian distribution and discussion of dispersion relation and growth rate of twisted IA waves under various conditions is presented.In the domain of kinetic model,the twisted IA waves are characterized by Laguerre-Gaussian(LG) solutions,where plasma distribution function and electric field are decomposed into axial and azimuthal components.The plasma response function is obtained under paraxial approximations and investigated for threshold condition of instability growth rate with helical electric field structures.The impact of an extra electron specie on the instability is demonstrated through a comparison of twisted waves for single and double electron species.
文摘The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.
基金Project supported by the National Natural Science Foundation of China(Grant No.11975143)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MA017)+1 种基金the Taishan Scholars Program of Shandong Province,China(Grant No.ts20190936)the Shandong University of Science and Technology Research Fund(Grant No.2015TDJH102).
文摘The quantum hydrodynamic model for ion-acoustic waves in plasmas is studied.First,we design a new disturbance expansion to describe the ion fluid velocity and electric field potential.It should be emphasized that the piecewise function perturbation form is new with great difference from the previous perturbation.Then,based on the piecewise function perturbation,a(3+1)-dimensional generalized modified Korteweg–de Vries Zakharov–Kuznetsov(mKdV-ZK)equation is derived for the first time,which is an extended form of the classical mKdV equation and the ZK equation.The(3+1)-dimensional generalized time-space fractional mKdV-ZK equation is constructed using the semi-inverse method and the fractional variational principle.Obviously,it is more accurate to depict some complex plasma processes and phenomena.Further,the conservation laws of the generalized time-space fractional mKdV-ZK equation are discussed.Finally,using the multi-exponential function method,the non-resonant multiwave solutions are constructed,and the characteristics of ion-acoustic waves are well described.
文摘Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.
文摘The one-dimensional quantum hydrodynamic (QHD) model for a three-specie quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic wave (DIAW). It is found that owing to the quantum effects, the dynamics of small but finite amplitude quantum dust ion-acoustic waves (QDIA) is governed by a deformed Korteweg-de Vries equation (dK-dV). The latter admits compressive as well as rarefactive stationary QDIA solitary wave solution. In the fully quantum case, the QDIA soliton experiences a spreading which becomes more significant as electron depletion is enhanced.
文摘Nonlinear propagation of dust-ion-acoustic waves in a degenerate dense plasma (with the constituents being degenerate, for both the limits non-relativistic or ultra-relativistic) have been investigated by the reductive perturbation method. The Korteweg de-Vries (K-dV) equation and Burger’s equation have been derived, and the numerical solutions of those equations have been analyzed to identify the basic features of electrostatic solitary and shock structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs, have been briefly discussed.
文摘The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.
文摘Nonlinear solitary waves are investigated for a plasma system at the night side of Titan's ionosphere.The plasma model consists of three positive ions,namely C2H5^+,HCNH^+,and C3H5^+,as well as Maxwellian electrons.The basic set of fluid equations is reduced to a Korteweg de-Vries(KdV)equation and linear inhomogeneous higher order KdV(LIHO-KdV)equation.The solitary wave solutions of both equations are obtained using a renormalization method.The solitary waves'existence region and the wave profile are investigated,and their dependences on the plasma parameters at the night side of Titan's ionosphere are examined.The solitary waves'phase velocities are subsonic or supersonic,and the propagating pulses are usually positive.The effect of higher-order corrections on the perturbation theory is investigated.It is found that the higher-order contribution makes the amplitude slightly taller,which is suitable for describing the solitary waves when the amplitude augments.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province,China (Grant No.20203CCD46008)the Key R&D Plan of Jiangxi Province,China (Grant No.20223BBH80006)+1 种基金the Natural Science Foundation of Jiangxi Province,China (Grant No.20212BAB211025)the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No.20171BCD40005)。
文摘We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金Supported by the National Natural Science Foundation of China(No.41976012)the Key Research Program of Laoshan Laboratory(LSL)(No.LSKJ 202202502)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDB 42000000)。
文摘The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金supported by grants from the National Natural Science Foundation of China(Grant No.U2130104)。
文摘Terahertz(THz)waves,also known as T-rays,encompass frequencies ranging from 0.1 to 10 THz and possess unique properties that render them applicable in various biomedical domains,particularly in neurobiology[1].Synaptic transmission,the process through which signals propagate between neurons at synapses,is pivotal for brain function and information processing.
文摘The sound of space-time at the large scale is observed in the form of gravitational waves, which are disturbances in space-time produced by wavelike distortions (or kinks) in the gravitational field of an accelerating parcel or distribution of energy. In this study, we investigate a hypothetical wave mode of quantum space-time, which suggests the existence of scalar Planck waves. According to this hypothesis, the sound of quantum space-time corresponds to kinks propagating in the gravitational displacement field of an oscillating energy density. In evaluating the emission of scalar Planck waves and their effect on the geometry of space-time, one finds that they not only transport a vanishingly small amount of energy but can also be used to simulate gravity.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574153)the Foundation of the Ministry of Industry and Information Technology of China(Grant No.TSXK2022D007)。
文摘This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.
基金partially supported by the NSFC(11971179,12371205)partially supported by the National Key R&D Program of China(2021YFA1002900)+1 种基金the Guangdong Province Basic and Applied Basic Research Fund(2021A1515010235)the Guangzhou City Basic and Applied Basic Research Fund(2024A04J6336)。
文摘We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.
文摘In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and radioactive decay are sources of such waves. It is also shown that a gravitomagnetic wave propagating in a certain direction can be understood as the macroscopic manifestation of a spatial sequence of informatons whose characteristic angle is fluctuating along that—with the speed of light—speeding “train”. Finally, it is shown that gravitomagnetic waves transport energy in the form of packages carried by informatons. These entities are called “gravitons”.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金support from the National Natural Sciences Foundation of China(Nos.42177159,42077277,41877253)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106304).
文摘Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.