Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelect...Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography展开更多
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purificati...L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.展开更多
The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is ...The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.展开更多
Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxi...Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxicity as well as the absence of allergenicity and reactogenicity is confirmed by testing selected bacteriocins [2] [3]. Bacteriocins can be widely used as preservatives and antibiotic alternatives in medicine. Nisin, a Streptococcus lactis-derived bacteriocin, has been in practice in food industry for a long time. A relevant product contains about 2.5% of nisin. For medical use (e.g., when injected into the blood stream), highly purified drugs are required. However, the yield of bacteriocins accounts for no more than a few percents from the total activity in the culture liquid. In this paper, we propose methods (by example of two B. subtilis strains), allowing to increase the yield up to ~80%. It is believed that other bacteriocins may be purified by these methods and with the same yield.展开更多
建立了离子排斥色谱法( ion-exclusion chromatography,IEC)测定黄酒中有机酸含量的分析方法。使用Waters 离子排斥色谱柱(300 mm×7.8 mm,7μm),流动相为 H 2 SO 4溶液( A)与乙腈( B)的混合溶液(体积比为98:2),线...建立了离子排斥色谱法( ion-exclusion chromatography,IEC)测定黄酒中有机酸含量的分析方法。使用Waters 离子排斥色谱柱(300 mm×7.8 mm,7μm),流动相为 H 2 SO 4溶液( A)与乙腈( B)的混合溶液(体积比为98:2),线性梯度程序:0~40 min,流动相 A 的浓度由0.01 mol / L 上升到0.02 mol / L;40~50 min,流动相 A 的浓度为0.01 mol / L ;流速为0.5 mL / min,柱温50℃,进样量10μL,检测波长210 nm。结果表明,该方法可在30 min内实现草酸、马来酸、柠檬酸、酒石酸、苹果酸、抗坏血酸、琥珀酸、乳酸、富马酸、乙酸、丙酸、异丁酸和丁酸的完全分离与定量,13种有机酸在0.001~1.000 g / L 范围内线性关系良好,回归方程的线性相关系数在0.9997以上。黄酒中13种有机酸的加标回收率为93.4%~103.8%,相对标准偏差为0.1%~1.5%(n =5)。该方法简单快捷、准确、重复性好,可用于黄酒中有机酸的测定。展开更多
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expande...R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.展开更多
By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by th...By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by the solid-phase peptide synthesis(SPPS) method. The purity of the final product reached 95% through ion-exchange chromatography on DEAE Sepharose Fast Flow chromatography and Delta-Pak TM C18 purification after optimizing the chromatographic conditions. The capacity of purification process was 50mg/circle. The total yield was 36%. The technology is simple and reliable, and can be scaled up easily.展开更多
A unified ion-exclusion chromatography(IEC) system for monitoring anionic and cationic nutrients like NH + 4,NO 2,NO 3,phosphate ion,silicate ion and HCO 3 was developed and applied to several environmental waters.The...A unified ion-exclusion chromatography(IEC) system for monitoring anionic and cationic nutrients like NH + 4,NO 2,NO 3,phosphate ion,silicate ion and HCO 3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV) detection at 210 nm for determining NH + 4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO 2 and NO 3 on cation-exchange separation column in H + form,the IEC with UV-detection at 210 nm for determining HCO 3 on cation-exchange separation column in H + form connected with anion-exchange UV-conversion column in I form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.展开更多
文摘Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1066)National Natural Science Foundation of China(No.21306086)Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BK20151452)
文摘L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
文摘The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.
文摘Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxicity as well as the absence of allergenicity and reactogenicity is confirmed by testing selected bacteriocins [2] [3]. Bacteriocins can be widely used as preservatives and antibiotic alternatives in medicine. Nisin, a Streptococcus lactis-derived bacteriocin, has been in practice in food industry for a long time. A relevant product contains about 2.5% of nisin. For medical use (e.g., when injected into the blood stream), highly purified drugs are required. However, the yield of bacteriocins accounts for no more than a few percents from the total activity in the culture liquid. In this paper, we propose methods (by example of two B. subtilis strains), allowing to increase the yield up to ~80%. It is believed that other bacteriocins may be purified by these methods and with the same yield.
文摘建立了离子排斥色谱法( ion-exclusion chromatography,IEC)测定黄酒中有机酸含量的分析方法。使用Waters 离子排斥色谱柱(300 mm×7.8 mm,7μm),流动相为 H 2 SO 4溶液( A)与乙腈( B)的混合溶液(体积比为98:2),线性梯度程序:0~40 min,流动相 A 的浓度由0.01 mol / L 上升到0.02 mol / L;40~50 min,流动相 A 的浓度为0.01 mol / L ;流速为0.5 mL / min,柱温50℃,进样量10μL,检测波长210 nm。结果表明,该方法可在30 min内实现草酸、马来酸、柠檬酸、酒石酸、苹果酸、抗坏血酸、琥珀酸、乳酸、富马酸、乙酸、丙酸、异丁酸和丁酸的完全分离与定量,13种有机酸在0.001~1.000 g / L 范围内线性关系良好,回归方程的线性相关系数在0.9997以上。黄酒中13种有机酸的加标回收率为93.4%~103.8%,相对标准偏差为0.1%~1.5%(n =5)。该方法简单快捷、准确、重复性好,可用于黄酒中有机酸的测定。
文摘R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.
文摘By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by the solid-phase peptide synthesis(SPPS) method. The purity of the final product reached 95% through ion-exchange chromatography on DEAE Sepharose Fast Flow chromatography and Delta-Pak TM C18 purification after optimizing the chromatographic conditions. The capacity of purification process was 50mg/circle. The total yield was 36%. The technology is simple and reliable, and can be scaled up easily.
基金financially supported from TOSOH Corporation and Fellowships Program for Young Scientists of the Japan Society for the Promotion of Science on FY2011
文摘A unified ion-exclusion chromatography(IEC) system for monitoring anionic and cationic nutrients like NH + 4,NO 2,NO 3,phosphate ion,silicate ion and HCO 3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV) detection at 210 nm for determining NH + 4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO 2 and NO 3 on cation-exchange separation column in H + form,the IEC with UV-detection at 210 nm for determining HCO 3 on cation-exchange separation column in H + form connected with anion-exchange UV-conversion column in I form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.