Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelect...Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography展开更多
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purificati...L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.展开更多
The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is ...The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.展开更多
Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxi...Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxicity as well as the absence of allergenicity and reactogenicity is confirmed by testing selected bacteriocins [2] [3]. Bacteriocins can be widely used as preservatives and antibiotic alternatives in medicine. Nisin, a Streptococcus lactis-derived bacteriocin, has been in practice in food industry for a long time. A relevant product contains about 2.5% of nisin. For medical use (e.g., when injected into the blood stream), highly purified drugs are required. However, the yield of bacteriocins accounts for no more than a few percents from the total activity in the culture liquid. In this paper, we propose methods (by example of two B. subtilis strains), allowing to increase the yield up to ~80%. It is believed that other bacteriocins may be purified by these methods and with the same yield.展开更多
Considering all the kinds of interactions between solute and solvent, solute and stationary phase, solvent and stationary phase molecules as well as the competitional adsorption among various kinds of solvent molecule...Considering all the kinds of interactions between solute and solvent, solute and stationary phase, solvent and stationary phase molecules as well as the competitional adsorption among various kinds of solvent molecules on the stationary phase, we present a stoichiometric displacement model of solute retention with four sets of parameters in liquid chromatography. This model was tested with data from both literature and experiments done by ourselves. These results show that this model may fit the experimental data for a liquid chromatography system with various kinds of mobile phases consisting of a complete range of multi-components and with different types of stationary phases.展开更多
With four kinds of mobile phases, methanol water, ethanol water, 2 propanol and acetonitrile water (all containing 0 1% triflu roacetic acid), the displacement between solute and solvent in RPLC was proved to be...With four kinds of mobile phases, methanol water, ethanol water, 2 propanol and acetonitrile water (all containing 0 1% triflu roacetic acid), the displacement between solute and solvent in RPLC was proved to be universal in frontal analysis (FA). Based on the measured Z value in usual RPLC to be a constant and the quantitative determination of methanol increment in mobile phase in FA, the stoichiometric displacement (SD) between insulin and methanol was directly proved by the experiment. The SD was also proved to occur only on about the one fourth of the maximum amount of adsorbed methanol in the bonded phase layer (BPL) without any dynamic problem of mass transfer, while in FA, the SD firstly occurs on the surface of the BPL and then gradually sinks into the deeper sites companied with a dynamic problem. Although the displaced solvent by the same solute is less in the former case, the SD is independent of how deep of the solute enters the BPL. In addition, the adsorbed amount of solute on an adsorbent not only depends on the numbers of the adsorbed layer on the adsorbent surface, but also on the extent of the complete removal of the displaceable solvent in the BPL. The physical fundamental of the SD and the methodology for investigation were also discussed.展开更多
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expande...R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.展开更多
文摘Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1066)National Natural Science Foundation of China(No.21306086)Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BK20151452)
文摘L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
文摘The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.
文摘Bacteriocins are a large group of chromosome or plasmid-encoded and ribosomally synthesized low-molecular-weight (2 to 6 kDa) antimicrobial and amphiphilous peptides produced by Gr+ or Gr- bacteria [1]. Their low toxicity as well as the absence of allergenicity and reactogenicity is confirmed by testing selected bacteriocins [2] [3]. Bacteriocins can be widely used as preservatives and antibiotic alternatives in medicine. Nisin, a Streptococcus lactis-derived bacteriocin, has been in practice in food industry for a long time. A relevant product contains about 2.5% of nisin. For medical use (e.g., when injected into the blood stream), highly purified drugs are required. However, the yield of bacteriocins accounts for no more than a few percents from the total activity in the culture liquid. In this paper, we propose methods (by example of two B. subtilis strains), allowing to increase the yield up to ~80%. It is believed that other bacteriocins may be purified by these methods and with the same yield.
基金Project supported by the Excellent Young Faculty Foundation of the State Education Committee of China
文摘Considering all the kinds of interactions between solute and solvent, solute and stationary phase, solvent and stationary phase molecules as well as the competitional adsorption among various kinds of solvent molecules on the stationary phase, we present a stoichiometric displacement model of solute retention with four sets of parameters in liquid chromatography. This model was tested with data from both literature and experiments done by ourselves. These results show that this model may fit the experimental data for a liquid chromatography system with various kinds of mobile phases consisting of a complete range of multi-components and with different types of stationary phases.
文摘With four kinds of mobile phases, methanol water, ethanol water, 2 propanol and acetonitrile water (all containing 0 1% triflu roacetic acid), the displacement between solute and solvent in RPLC was proved to be universal in frontal analysis (FA). Based on the measured Z value in usual RPLC to be a constant and the quantitative determination of methanol increment in mobile phase in FA, the stoichiometric displacement (SD) between insulin and methanol was directly proved by the experiment. The SD was also proved to occur only on about the one fourth of the maximum amount of adsorbed methanol in the bonded phase layer (BPL) without any dynamic problem of mass transfer, while in FA, the SD firstly occurs on the surface of the BPL and then gradually sinks into the deeper sites companied with a dynamic problem. Although the displaced solvent by the same solute is less in the former case, the SD is independent of how deep of the solute enters the BPL. In addition, the adsorbed amount of solute on an adsorbent not only depends on the numbers of the adsorbed layer on the adsorbent surface, but also on the extent of the complete removal of the displaceable solvent in the BPL. The physical fundamental of the SD and the methodology for investigation were also discussed.
文摘R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.