Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process sig...Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process significantly. The ultrasound generated by flat plate transducer (UFPT) was used to clean the polluted PVDF ultrafiltration membrane with 2 g·L^-1 of citric acid aqueous solution in our study. The effects of UFPT intensity on the membrane surface were studied. The new membrane was easy to be polluted by the saturated CaCl2 solution. A synergistic effect of UFPT and 2 g·L^-1 citric acid aqueous solution could remove the foul of the membrane, and its flux could be recovered about 81%. The flux recovery of old membrane polluted was increased to 73.2% after 7 h soaking in citric acid aqueous solution, but its flux recovery without soaking was only increased to 56.2%.展开更多
Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summariz...Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summarized in this paper. It also has covered three fouling resistance models and four kinds of approaches to improve membrane performance. Membrane cleaning methods are also discussed including physical, chemical, physico\|chemical and biological methods. In the four groups of basic cleaning methods, biological cleaning has considerable advantages and potentials. Extensive research work should be carried out further to explore and develop new ideas and techniques in the field of membrane cleaning and restoration.展开更多
Catalytic membrane, a novel membrane separation technology that combines catalysis and separation, exhibits significant potential in gas purification such as formaldehyde, toluene and nitrogen oxides(NO_x). The cataly...Catalytic membrane, a novel membrane separation technology that combines catalysis and separation, exhibits significant potential in gas purification such as formaldehyde, toluene and nitrogen oxides(NO_x). The catalytic membrane can remove solid particles through membrane separation and degrade gaseous pollutants to clean gas via a catalytic reaction to achieve green emissions. In this review, we discussed the recent developments of catalytic membranes from two aspects: preparation of catalytic membrane and its application in gas cleaning.Catalytic membranes are divided into organic catalytic membranes and inorganic catalytic membranes depending on the substrate materials. The organic catalytic membranes which are used for low temperature operation(less than 300 °C) are prepared by modifying the polymers or doping catalytic components into the polymers through coating, grafting, or in situ growth of catalysts on polymeric membrane. Inorganic catalytic membranes are used at higher temperature(higher than 500 °C). The catalyst and inorganic membrane can be integrated through conventional deposition methods, such as chemical(physical) vapor deposition and wet chemical deposition. The application progress of catalytic membrane is focused on purifying indoor air and industrial exhaust to remove formaldehyde, toluene, NO_x and PM2.5, which are also summarized. Perspectives on the future developments of the catalytic membranes are provided in terms of material manufacturing and process optimization.展开更多
Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and ...Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.展开更多
Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion va...Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.展开更多
1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion excha...1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck展开更多
The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality an...The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.展开更多
The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile...The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile is observed as time passes. The initially extended period of slow pressure rise, followed by a somewhat faster rise, is then sup- planted by a sudden transition to rapid pressure rise. Membrane cleaning experiments and SEM examination make it apparent that the rapid TMP rise is mainly caused by the accumulation of a surface cake layer, which is a reversible fouling that can be removed by tap water washing. Fouling caused by a gel layer, which is an irreversible fouling, can be removed efficiently by chemical cleaning. NaC10 can oxidize the gel layer, which is formed mainly of macromo-lecular organic substances. The HC1 can remove inorganic particles formed by Ca^2+, Mg^2+ ions etc. The sequence of chemicals used in membrane cleaning has an influence on the cleaning result. The effect of the NaC1O+HC1 cleaning procedure is superior to that of the HCI+NaC1O one. Particle size distribution measurements (PSD) reveal that fine particles are inclined to deposit or attach on the membrane surface, or in the membrane pores, and caused rapid fouling.展开更多
1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting a...1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients展开更多
Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent bl...Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent blends were employed for the coal extraction under the total reflux condition. A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D, Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture. Membrane separations were carried out in a batch cell, and around 75 % recovered NMP was reused. The fractionated coal properties were determined using proximate and ultimate analyses. In the case of bituminous coal, the ash and sulfur contents were decreased by 99.3 % and 79.2 %, respectively, whereas, the carbon content was increased by 23.9 % in the separated coal fraction. Three different cleaning agents, namely deionized water, sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.展开更多
Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of ...Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).展开更多
An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membran...An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.展开更多
Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,v...Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,valence,specific ion,ion/solvent,and ion/uncharged solute selectivities.Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed.Because of the underlying principles governing transport,efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion.Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies,including bioelectrochemical systems,hypersaline electrodialysis desalination,fuel cells,and redox flow batteries,but the ion/solvent and ion/uncharged solute selectivities are relatively understudied,compared to the ion/ion selectivities.Deepening fundamental understanding of the transport phenomena,specifically the factors underpinning structure-property-performance relationships,will be vital to guide the informed development of more selective IEMs.Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff.Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water,energy,and environmental challenges.展开更多
Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydis...Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.展开更多
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
文摘Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process significantly. The ultrasound generated by flat plate transducer (UFPT) was used to clean the polluted PVDF ultrafiltration membrane with 2 g·L^-1 of citric acid aqueous solution in our study. The effects of UFPT intensity on the membrane surface were studied. The new membrane was easy to be polluted by the saturated CaCl2 solution. A synergistic effect of UFPT and 2 g·L^-1 citric acid aqueous solution could remove the foul of the membrane, and its flux could be recovered about 81%. The flux recovery of old membrane polluted was increased to 73.2% after 7 h soaking in citric acid aqueous solution, but its flux recovery without soaking was only increased to 56.2%.
文摘Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summarized in this paper. It also has covered three fouling resistance models and four kinds of approaches to improve membrane performance. Membrane cleaning methods are also discussed including physical, chemical, physico\|chemical and biological methods. In the four groups of basic cleaning methods, biological cleaning has considerable advantages and potentials. Extensive research work should be carried out further to explore and develop new ideas and techniques in the field of membrane cleaning and restoration.
基金Supported by the National Key R&D Program(2016YFC0204000)the National Natural Science Foundation of China(21878148,and U1510202)the Jiangsu Province Scientific Supporting Project(BK20170046)
文摘Catalytic membrane, a novel membrane separation technology that combines catalysis and separation, exhibits significant potential in gas purification such as formaldehyde, toluene and nitrogen oxides(NO_x). The catalytic membrane can remove solid particles through membrane separation and degrade gaseous pollutants to clean gas via a catalytic reaction to achieve green emissions. In this review, we discussed the recent developments of catalytic membranes from two aspects: preparation of catalytic membrane and its application in gas cleaning.Catalytic membranes are divided into organic catalytic membranes and inorganic catalytic membranes depending on the substrate materials. The organic catalytic membranes which are used for low temperature operation(less than 300 °C) are prepared by modifying the polymers or doping catalytic components into the polymers through coating, grafting, or in situ growth of catalysts on polymeric membrane. Inorganic catalytic membranes are used at higher temperature(higher than 500 °C). The catalyst and inorganic membrane can be integrated through conventional deposition methods, such as chemical(physical) vapor deposition and wet chemical deposition. The application progress of catalytic membrane is focused on purifying indoor air and industrial exhaust to remove formaldehyde, toluene, NO_x and PM2.5, which are also summarized. Perspectives on the future developments of the catalytic membranes are provided in terms of material manufacturing and process optimization.
基金financially supported by the National Natural Science Foundation of China(21921006).
文摘Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.
基金Project(20776161)supported by the National Natural Science Foundation of China
文摘Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.
基金Supported by a grant from Chinese Pastdoctoral Foundation
文摘1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck
基金Sponsored by the Tianjin Municipal Science and Technology Commission (Grant No. 05FZZDSH00500)
文摘The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.
基金Projects 200457 supported by the Planning Foundation of Hebei Water Conservancy Bureau in ChinaOP4476 by the Youth Foundation of China Univer- sity of Mining & Technology
文摘The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile is observed as time passes. The initially extended period of slow pressure rise, followed by a somewhat faster rise, is then sup- planted by a sudden transition to rapid pressure rise. Membrane cleaning experiments and SEM examination make it apparent that the rapid TMP rise is mainly caused by the accumulation of a surface cake layer, which is a reversible fouling that can be removed by tap water washing. Fouling caused by a gel layer, which is an irreversible fouling, can be removed efficiently by chemical cleaning. NaC10 can oxidize the gel layer, which is formed mainly of macromo-lecular organic substances. The HC1 can remove inorganic particles formed by Ca^2+, Mg^2+ ions etc. The sequence of chemicals used in membrane cleaning has an influence on the cleaning result. The effect of the NaC1O+HC1 cleaning procedure is superior to that of the HCI+NaC1O one. Particle size distribution measurements (PSD) reveal that fine particles are inclined to deposit or attach on the membrane surface, or in the membrane pores, and caused rapid fouling.
基金Supported by the Post-doctoral Foundation of China
文摘1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients
文摘Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents, namely, n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA). Various solvent blends were employed for the coal extraction under the total reflux condition. A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D, Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture. Membrane separations were carried out in a batch cell, and around 75 % recovered NMP was reused. The fractionated coal properties were determined using proximate and ultimate analyses. In the case of bituminous coal, the ash and sulfur contents were decreased by 99.3 % and 79.2 %, respectively, whereas, the carbon content was increased by 23.9 % in the separated coal fraction. Three different cleaning agents, namely deionized water, sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.
文摘Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).
基金Development and Evolution Program of Fujian. No.04FSD.
文摘An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.
文摘Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,valence,specific ion,ion/solvent,and ion/uncharged solute selectivities.Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed.Because of the underlying principles governing transport,efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion.Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies,including bioelectrochemical systems,hypersaline electrodialysis desalination,fuel cells,and redox flow batteries,but the ion/solvent and ion/uncharged solute selectivities are relatively understudied,compared to the ion/ion selectivities.Deepening fundamental understanding of the transport phenomena,specifically the factors underpinning structure-property-performance relationships,will be vital to guide the informed development of more selective IEMs.Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff.Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water,energy,and environmental challenges.
基金supported by the Natural Science Foundation of China(Nos.52070081,51578258 and 51878308)the National Key Research and Development Program of China(No.2022YFC3203500)。
文摘Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.