Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po...Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A...An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.展开更多
Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised g...Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.展开更多
Processing bioactive peptides from natural sources using electrodialysis with ultrafiltration membranes(EDUF)have gained attention since it can fractionate in terms of their charge and molecular weight.Quinoa is a pse...Processing bioactive peptides from natural sources using electrodialysis with ultrafiltration membranes(EDUF)have gained attention since it can fractionate in terms of their charge and molecular weight.Quinoa is a pseudo-cereal highlighted by its high protein content,amino acid profile and adapting growing conditions.The present work aimed at the production of quinoa peptides through fractionation using EDUF and to test the fractions according to antihypertensive and antidiabetic activity.Experimental data showed the production of peptides ranging between 0.4 and 1.5 k Da.Cationic(CQPF)(3.01%),anionic(AQPF)(1.18%)and the electrically neutral fraction quinoa protein hydrolysate(QPH)-EDUF(~95%)were obtained.In-vitro studies showed the highest glucose uptake modulation in L6 cell skeletal myoblasts in presence of QPH-EDUF and AQPF(17%and 11%)indicating potential antidiabetic activity.The antihypertensive effect studied in-vivo in spontaneously hypertensive rats(SHR),showed a decrease in systolic blood pressure in presence of the fractionated peptides,being 100 mg/kg a dose comparable to Captopril(positive control).These results contribute to the current knowledge of bioactive peptides from quinoa by reporting the relevance of EDUF as tool to produce selected peptide fractions.Nevertheless,further characterization is needed towards peptide sequencing,their respective role in the metabolism and scaling-up production using EDUF.展开更多
In order to design the technological process of desalination by electrodialysis for the industrial wastewater of an alumina plant, the limit current density of the industrial wastewater is measured, and the equations ...In order to design the technological process of desalination by electrodialysis for the industrial wastewater of an alumina plant, the limit current density of the industrial wastewater is measured, and the equations of limit current density, voltage drop of the unit membrane pair at the limiting current and desalination ratio at the limiting current were obtained.展开更多
1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion excha...1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck展开更多
An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membran...An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.展开更多
Although selective nanofiltration(SNF)and selective electrodialysis(SED)have been widely adopted in the field of Mg^(2+)/Li^(+)separation,their differences have not been illustrated systematically.In this study,for th...Although selective nanofiltration(SNF)and selective electrodialysis(SED)have been widely adopted in the field of Mg^(2+)/Li^(+)separation,their differences have not been illustrated systematically.In this study,for the first time,SNF and SED processes in continuous mode were studied for Li+fractionation from the same brine with high Mg/Li ratios and their differences were discussed in detail.For a fair analysis of the two processes,typical factors were optimized.Specifically,the optimal operating pressure and feed flow rate for SNF were 2.4 MPa and 140 L·h^(-1),respectively,while the optimal cell-pair voltage and replenishment flow rate for SED were 1.0 V and 14 L·h^(-1),respectively.Although the Li^(+)fractionation capacity of the two processes were similar,the selectivity coefficient of SNF was 24.7% higher than that of SED and,thus,the Mg/Li ratio in purified stream of the former was 19.0% lower than that of the latter.Due to higher ion driving force,SED had clear advantages in recovery ratio and concentration effects.Meanwhile,the specific energy consumption of SED was 20.1% lower than that of SNF.This study provided a better understanding and guidance for the application and improvement of the two technologies.展开更多
The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged...The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.展开更多
In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis...In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na_(2)CO_(3)products using simulated seawater concentrate,achieving simultaneous saline wastewater utilization,carbon storage and high-value production of Na_(2)CO_(3).The effects of various factors,including concentration of simulated seawater concentrate,current density,CO_(2)aeration rate,and circulating flow rate of alkali chamber,on the quality of Na_(2)CO_(3)product,carbon sequestration rate,and energy consumption were investigated.Under the optimal condition,the CO_(3)^(2-)concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol%purity.The resulting carbon fixation rate was 70.50%,with energy consumption for carbon sequestration and product production of 5.7 k Whr/m^(3)CO_(2)and1237.8 k Whr/ton Na_(2)CO_(3),respectively.This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.展开更多
As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multival...As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes(MCPMs) and their preparation technologies including(1) covalent crosslinking,(2) surface modification,(3) polymer blending,(4) electrospinning,(5) nanofiltration alike membrane,and(6) organic–inorganic hybrid. The relevant advantages and disadvantages with respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives.展开更多
The experimental results of producing deionized water for the themoelectric factory from two types of the industrial wastewater of an alumina plant by using membrane technology are reported in this paper. For the trea...The experimental results of producing deionized water for the themoelectric factory from two types of the industrial wastewater of an alumina plant by using membrane technology are reported in this paper. For the treatment of the industrial wastewater with high salinity and pH value, the combination of electrodialysis (ED) and reverse osmosis (RO) is utilized, while for the treatment of the low salinity wastewater with low pH value, RO is directly used. The research results show that the above mentioned methods are effective. The technological process of the wastewater treatment with the capacity of 120 tons is designed on the basis of the experimental results.展开更多
With the wide application of ionic liquids(ILs)in various fields,developing efficient techniques to recover ILs from effluent is an urgent demand for the cost reduction and the environmental protection.In this study,a...With the wide application of ionic liquids(ILs)in various fields,developing efficient techniques to recover ILs from effluent is an urgent demand for the cost reduction and the environmental protection.In this study,an electrodialysis(ED)method was used to recover 1-butyl-3-methylimidazolium chloride([Bmim]Cl)IL from aqueous solution as model effluent.The influences of initial IL concentration and applied voltage on the current efficiency,removal ratio,desalination ratio,membrane flux and specific energy consumption during the ED process were investigated.It was found that the removal ratio and desalination ratio increases with the increasing of initial IL concentration and applied voltage.The current efficiency decreases with the increasing of initial IL concentration and the current efficiency reached the maximum value of 94.3%at 25 V.Besides,as the applied voltage increases,the membrane flux increases and the specific energy consumption decreases.Moreover,the fouling of cation-exchange membrane was also discovered after the desalination of IL.The deposits on the surface or into the membrane which is probably caused by[Bmim]+was characterized by scanning electron microscopy,elemental analysis and Fourier transform infrared.展开更多
1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting a...1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients展开更多
Anion-exchange membranes 3362W and AM-203 were evaluated for facilitating the concentration of β-Naphthalenesulfonic acid by electrodialysis. The effect of concentration, temperature, electric current and time on the...Anion-exchange membranes 3362W and AM-203 were evaluated for facilitating the concentration of β-Naphthalenesulfonic acid by electrodialysis. The effect of concentration, temperature, electric current and time on the electrodialysis process were studied. Experimental results indicated that electrodialysis was an effective method for concentrating β-Naphthalenesulfonic acid at 25℃. Higher efficiencies were not obtained at high temperature. The overall current efficiency was 80%~95%.展开更多
Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,v...Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,valence,specific ion,ion/solvent,and ion/uncharged solute selectivities.Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed.Because of the underlying principles governing transport,efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion.Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies,including bioelectrochemical systems,hypersaline electrodialysis desalination,fuel cells,and redox flow batteries,but the ion/solvent and ion/uncharged solute selectivities are relatively understudied,compared to the ion/ion selectivities.Deepening fundamental understanding of the transport phenomena,specifically the factors underpinning structure-property-performance relationships,will be vital to guide the informed development of more selective IEMs.Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff.Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water,energy,and environmental challenges.展开更多
The absorption process in acrylic acid production was water-intensive.The concentration of acrylic acid before distillation process was low,which induced to large amount of wastewater and enormous energy consumption.I...The absorption process in acrylic acid production was water-intensive.The concentration of acrylic acid before distillation process was low,which induced to large amount of wastewater and enormous energy consumption.In this work,a new method was proposed to concentrate the side stream of absorption column and thus increase the concentration in bottom product by electrodialysis.The influence of operating conditions on concentration rate and specific energy consumption were investigated by a laboratory-scale device.When the voltage drop was 1 V·cP^(-1)(1 cP=10^(-3) Pa·s),flow velocity was 3 cm·s^(-1) and the temperature was 35℃,the concentration rates of acrylic acid and acetic acid could be 203.3%and 156.6%in the continual-ED process.Based on the experimental data,the absorption process combined with ED was simulated,in which the diluted solution from ED process was used as spray water and the concentrated solution was feed back to the absorption column.The results shown that the flow rate of spray water was decreased by 37.1%,and the acrylic acid concentration at the bottom of the tower was increased by 4.56%.The ions exchange membranes before and after use 1200 h were tested by membrane surface morphology(scanning electron microscope),membrane chemical groups(infrared spectra),ion exchange capacity,and membrane area resistance,which indicated the membrane were stable in the acid system.This method provides new method for energy conservation and emission reduction in the traditional chemical industry.展开更多
In this study,the removal of monovalent and divalent cations,Nat,Kt,Mg2t,and Ca2t,in a diluted solution from Chott-El Jerid Lake,Tunisia,was investigated with the electrodialysis technique.The process was tested using...In this study,the removal of monovalent and divalent cations,Nat,Kt,Mg2t,and Ca2t,in a diluted solution from Chott-El Jerid Lake,Tunisia,was investigated with the electrodialysis technique.The process was tested using two cation-exchange membranes:sulfonated polyether sulfone cross-linked with 10%hexamethylenediamine(HEXCl)and sulfonated polyether sulfone grafted with octylamine(S-PESOS).The commercially available membrane Nafion®was used for comparison.The results showed that Nafion®and S-PESOS membranes had similar removal behaviors,and the investigated cations were ranked in the following descending order in terms of their demineralization rates:Nat>Ca2t>Mg2t>Kt.Divalent cations were more effectively removed by HEXCl than by monovalent cations.The plots based on the WebereMorris model showed a strong linearity.This reveals that intra-particle diffusion was not the removal rate-determining step,and the removal process was controlled by two or more concurrent mechanisms.The Boyd plots did not pass through their origin,and the sole controlling step was determined by film-diffusion resistance,especially after a long period of electrodialysis.Additionally,a semi-empirical model was established to simulate the temporal variation of the treatment process,and the physical significance and values of model parameters were compared for the three membranes.The findings of this study indicate that HEXCl and S-PESOS membranes can be efficiently utilized for water softening,especially when effluents are highly loaded with calcium and magnesium ions.展开更多
Electrodialysis (ED) of NaNO3 solutions was performed to stress the role of the membrane pair as a unit i.e. the behavior as a whole of Anion Exchange Membrane (AEM) and Cation Exchange Membrane (CEM), in the process ...Electrodialysis (ED) of NaNO3 solutions was performed to stress the role of the membrane pair as a unit i.e. the behavior as a whole of Anion Exchange Membrane (AEM) and Cation Exchange Membrane (CEM), in the process at room temperature. The membrane pair was also tested in the reclamation of nitric acid and sodium hydroxide. It was found that the membrane pair ranking in Limiting Current Density does not agree with that of ions leakage and both rankings are not the same as for Current Efficiency or Specific Power Consumption, each parameter for a specific membrane pair depends on the associated membrane and at a lesser degree on the flow rate. Results show that one cannot select a membrane or a membrane pair only by its limiting current density i.e. it is necessary to evaluate several parameters of the process by characterizing the whole membrane pair and to decide the parameter of interest, i.e. denitrification speed, ions leakage, proton back migration, current efficiency or specific power consumption.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3805100)National Natural Science Foundation of China(22222812 and 22178330)+1 种基金Anhui Provincial Key Research and Development Plan(202104b11020030)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金funded by National Natural Science Foundation of China(22278023,22208010)Beijing Municipal Science and Technology Planning Project(Z221100002722002)+3 种基金Bingtuan Science and Technology Program(2022DB025)Beijing Natural Science Foundation(2222015)Sinopec Group(323034)the long-term from the Ministry of Finance and the Ministry of Education of PRC。
文摘An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.
文摘Bipolar membrane electrodialysis(BMED) has already been described for the preparation of quaternary ammonium hydroxide. However, compared to quaternary ammonium hydroxide, di-quaternary ammonium hydroxide has raised great interest due to its high thermal stability and good oriented performance.In order to synthesize N,N-hexamethylenebis(trimethyl ammonium hydroxide)(HM(OH)_2) by EDBM,experiments designed by response surface methodology were carried out on the basis of single-factor experiments. The factors include current density, feed concentration and flow ratio of each compartment(feed compartment: base compartment: acid compartment: buffer compartment). The relationship between current efficiency and the above-mentioned three factors was quantitatively described by a multivariate regression model. According to the results, the feed concentration was the most significant factor and the optimum conditions were as follows: the current efficiency was up to 76.2%(the hydroxide conversion was over 98.6%), with a current density of 13.15 m A·cm^(-2), a feed concentration of 0.27 mol·L^(-1) and a flow ratio of 20 L·h^(-1):26 L·h^(-1):20 L·h^(-1):20 L·h^(-1) for feed compartment, base compartment, acid compartment, and intermediate compartment, respectively. This study demonstrates the optimized parameters of manufacturing HM(OH)_2 by direct splitting its halide for industrial application.
基金financially supported by the Postdoctoral Fellowship N°3190683 of Dr.Adrián González-Munoz from the Chilean Agencia Nacional de Investigación y Desarrollo(ANID)the Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant Program(Grant SD RGPIN-2018-04128 of Prof.Laurent Bazinet)。
文摘Processing bioactive peptides from natural sources using electrodialysis with ultrafiltration membranes(EDUF)have gained attention since it can fractionate in terms of their charge and molecular weight.Quinoa is a pseudo-cereal highlighted by its high protein content,amino acid profile and adapting growing conditions.The present work aimed at the production of quinoa peptides through fractionation using EDUF and to test the fractions according to antihypertensive and antidiabetic activity.Experimental data showed the production of peptides ranging between 0.4 and 1.5 k Da.Cationic(CQPF)(3.01%),anionic(AQPF)(1.18%)and the electrically neutral fraction quinoa protein hydrolysate(QPH)-EDUF(~95%)were obtained.In-vitro studies showed the highest glucose uptake modulation in L6 cell skeletal myoblasts in presence of QPH-EDUF and AQPF(17%and 11%)indicating potential antidiabetic activity.The antihypertensive effect studied in-vivo in spontaneously hypertensive rats(SHR),showed a decrease in systolic blood pressure in presence of the fractionated peptides,being 100 mg/kg a dose comparable to Captopril(positive control).These results contribute to the current knowledge of bioactive peptides from quinoa by reporting the relevance of EDUF as tool to produce selected peptide fractions.Nevertheless,further characterization is needed towards peptide sequencing,their respective role in the metabolism and scaling-up production using EDUF.
文摘In order to design the technological process of desalination by electrodialysis for the industrial wastewater of an alumina plant, the limit current density of the industrial wastewater is measured, and the equations of limit current density, voltage drop of the unit membrane pair at the limiting current and desalination ratio at the limiting current were obtained.
基金Supported by a grant from Chinese Pastdoctoral Foundation
文摘1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck
基金Development and Evolution Program of Fujian. No.04FSD.
文摘An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. 1R spectrum indicated that Fe^3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.
基金financial support by the National Key Research and Development Program of China(2017YFC0404003)the Tianjin Natural Science Foundation(21JCZDJC00270)+3 种基金the China Postdoctoral Science Foundation(2021M701875)the Tianjin Special Project of Ecological Environment Management Science and Technology(18ZXSZSF00050)the Tianjin Science and Technology Support Project(19YFZCSF00760)the Fundamental Research Funds for the Central Universities(63221312).
文摘Although selective nanofiltration(SNF)and selective electrodialysis(SED)have been widely adopted in the field of Mg^(2+)/Li^(+)separation,their differences have not been illustrated systematically.In this study,for the first time,SNF and SED processes in continuous mode were studied for Li+fractionation from the same brine with high Mg/Li ratios and their differences were discussed in detail.For a fair analysis of the two processes,typical factors were optimized.Specifically,the optimal operating pressure and feed flow rate for SNF were 2.4 MPa and 140 L·h^(-1),respectively,while the optimal cell-pair voltage and replenishment flow rate for SED were 1.0 V and 14 L·h^(-1),respectively.Although the Li^(+)fractionation capacity of the two processes were similar,the selectivity coefficient of SNF was 24.7% higher than that of SED and,thus,the Mg/Li ratio in purified stream of the former was 19.0% lower than that of the latter.Due to higher ion driving force,SED had clear advantages in recovery ratio and concentration effects.Meanwhile,the specific energy consumption of SED was 20.1% lower than that of SNF.This study provided a better understanding and guidance for the application and improvement of the two technologies.
基金National Natural Science Foundation of China,Grant/Award Numbers:12304265,92372113,22309059China Postdoctoral Science Foundation,Grant/Award Number:2023MD744237+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China,Grant/Award Number:20240514the Department of Science and Technology of Liaoning Province,Grant/Award Number:2022-MS-195。
文摘The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.
基金supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.226Z3102G)the Fundamental Research Funds of Hebei University of Technology(No.JBKYTD2001)the Science Research Project of Hebei Education Department(No.QN2022089)。
文摘In the context of carbon capture,utilization,and storage,the high-value utilization of carbon storage presents a significant challenge.To address this challenge,this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na_(2)CO_(3)products using simulated seawater concentrate,achieving simultaneous saline wastewater utilization,carbon storage and high-value production of Na_(2)CO_(3).The effects of various factors,including concentration of simulated seawater concentrate,current density,CO_(2)aeration rate,and circulating flow rate of alkali chamber,on the quality of Na_(2)CO_(3)product,carbon sequestration rate,and energy consumption were investigated.Under the optimal condition,the CO_(3)^(2-)concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol%purity.The resulting carbon fixation rate was 70.50%,with energy consumption for carbon sequestration and product production of 5.7 k Whr/m^(3)CO_(2)and1237.8 k Whr/ton Na_(2)CO_(3),respectively.This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.
基金Supported in part by the National Natural Science Foundation of China(21490581,21506200,21606215)K.C.Wong Education Foundation(2016-11)the China Postdoctoral Science Foundation(2015M570546)
文摘As one of the most typical and promising membrane processes, electrodialysis(ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes(MCPMs) and their preparation technologies including(1) covalent crosslinking,(2) surface modification,(3) polymer blending,(4) electrospinning,(5) nanofiltration alike membrane,and(6) organic–inorganic hybrid. The relevant advantages and disadvantages with respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives.
文摘The experimental results of producing deionized water for the themoelectric factory from two types of the industrial wastewater of an alumina plant by using membrane technology are reported in this paper. For the treatment of the industrial wastewater with high salinity and pH value, the combination of electrodialysis (ED) and reverse osmosis (RO) is utilized, while for the treatment of the low salinity wastewater with low pH value, RO is directly used. The research results show that the above mentioned methods are effective. The technological process of the wastewater treatment with the capacity of 120 tons is designed on the basis of the experimental results.
基金supported by the National Basic Research Program of China(973 Program)(2013CB733506)the National Natural Science Foundation of China(21036007,21076113)
文摘With the wide application of ionic liquids(ILs)in various fields,developing efficient techniques to recover ILs from effluent is an urgent demand for the cost reduction and the environmental protection.In this study,an electrodialysis(ED)method was used to recover 1-butyl-3-methylimidazolium chloride([Bmim]Cl)IL from aqueous solution as model effluent.The influences of initial IL concentration and applied voltage on the current efficiency,removal ratio,desalination ratio,membrane flux and specific energy consumption during the ED process were investigated.It was found that the removal ratio and desalination ratio increases with the increasing of initial IL concentration and applied voltage.The current efficiency decreases with the increasing of initial IL concentration and the current efficiency reached the maximum value of 94.3%at 25 V.Besides,as the applied voltage increases,the membrane flux increases and the specific energy consumption decreases.Moreover,the fouling of cation-exchange membrane was also discovered after the desalination of IL.The deposits on the surface or into the membrane which is probably caused by[Bmim]+was characterized by scanning electron microscopy,elemental analysis and Fourier transform infrared.
基金Supported by the Post-doctoral Foundation of China
文摘1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients
文摘Anion-exchange membranes 3362W and AM-203 were evaluated for facilitating the concentration of β-Naphthalenesulfonic acid by electrodialysis. The effect of concentration, temperature, electric current and time on the electrodialysis process were studied. Experimental results indicated that electrodialysis was an effective method for concentrating β-Naphthalenesulfonic acid at 25℃. Higher efficiencies were not obtained at high temperature. The overall current efficiency was 80%~95%.
文摘Ion-exchange membranes(IEMs)are utilized in numerous established,emergent,and emerging applications for water,energy,and the environment.This article reviews the five different types of IEM selectivity,namely charge,valence,specific ion,ion/solvent,and ion/uncharged solute selectivities.Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed.Because of the underlying principles governing transport,efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion.Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies,including bioelectrochemical systems,hypersaline electrodialysis desalination,fuel cells,and redox flow batteries,but the ion/solvent and ion/uncharged solute selectivities are relatively understudied,compared to the ion/ion selectivities.Deepening fundamental understanding of the transport phenomena,specifically the factors underpinning structure-property-performance relationships,will be vital to guide the informed development of more selective IEMs.Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff.Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water,energy,and environmental challenges.
基金supported by the National Key Research and Development Program of China(2016YFC0401202)Key Research and Development Program of Hebei Province(18394008D)。
文摘The absorption process in acrylic acid production was water-intensive.The concentration of acrylic acid before distillation process was low,which induced to large amount of wastewater and enormous energy consumption.In this work,a new method was proposed to concentrate the side stream of absorption column and thus increase the concentration in bottom product by electrodialysis.The influence of operating conditions on concentration rate and specific energy consumption were investigated by a laboratory-scale device.When the voltage drop was 1 V·cP^(-1)(1 cP=10^(-3) Pa·s),flow velocity was 3 cm·s^(-1) and the temperature was 35℃,the concentration rates of acrylic acid and acetic acid could be 203.3%and 156.6%in the continual-ED process.Based on the experimental data,the absorption process combined with ED was simulated,in which the diluted solution from ED process was used as spray water and the concentrated solution was feed back to the absorption column.The results shown that the flow rate of spray water was decreased by 37.1%,and the acrylic acid concentration at the bottom of the tower was increased by 4.56%.The ions exchange membranes before and after use 1200 h were tested by membrane surface morphology(scanning electron microscope),membrane chemical groups(infrared spectra),ion exchange capacity,and membrane area resistance,which indicated the membrane were stable in the acid system.This method provides new method for energy conservation and emission reduction in the traditional chemical industry.
文摘In this study,the removal of monovalent and divalent cations,Nat,Kt,Mg2t,and Ca2t,in a diluted solution from Chott-El Jerid Lake,Tunisia,was investigated with the electrodialysis technique.The process was tested using two cation-exchange membranes:sulfonated polyether sulfone cross-linked with 10%hexamethylenediamine(HEXCl)and sulfonated polyether sulfone grafted with octylamine(S-PESOS).The commercially available membrane Nafion®was used for comparison.The results showed that Nafion®and S-PESOS membranes had similar removal behaviors,and the investigated cations were ranked in the following descending order in terms of their demineralization rates:Nat>Ca2t>Mg2t>Kt.Divalent cations were more effectively removed by HEXCl than by monovalent cations.The plots based on the WebereMorris model showed a strong linearity.This reveals that intra-particle diffusion was not the removal rate-determining step,and the removal process was controlled by two or more concurrent mechanisms.The Boyd plots did not pass through their origin,and the sole controlling step was determined by film-diffusion resistance,especially after a long period of electrodialysis.Additionally,a semi-empirical model was established to simulate the temporal variation of the treatment process,and the physical significance and values of model parameters were compared for the three membranes.The findings of this study indicate that HEXCl and S-PESOS membranes can be efficiently utilized for water softening,especially when effluents are highly loaded with calcium and magnesium ions.
文摘Electrodialysis (ED) of NaNO3 solutions was performed to stress the role of the membrane pair as a unit i.e. the behavior as a whole of Anion Exchange Membrane (AEM) and Cation Exchange Membrane (CEM), in the process at room temperature. The membrane pair was also tested in the reclamation of nitric acid and sodium hydroxide. It was found that the membrane pair ranking in Limiting Current Density does not agree with that of ions leakage and both rankings are not the same as for Current Efficiency or Specific Power Consumption, each parameter for a specific membrane pair depends on the associated membrane and at a lesser degree on the flow rate. Results show that one cannot select a membrane or a membrane pair only by its limiting current density i.e. it is necessary to evaluate several parameters of the process by characterizing the whole membrane pair and to decide the parameter of interest, i.e. denitrification speed, ions leakage, proton back migration, current efficiency or specific power consumption.