Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital ...Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital between September 2022 and October 2023 were selected and divided into two groups according to the random number table method.The control group implemented the conventional treatment(n=46 cases),and the patch group adopted the simple egg membrane patch bridging method(n=47 cases).The healing rate of the tympanic membrane,the air-bone gap,the air conduction hearing threshold,the dry ear rate,and the incidence of complications in both groups were compared before and after treatment.Results:The healing rate of the tympanic membrane in the patch group was significantly higher than that of the control group(95.75%vs.76.09%),with P<0.05;there was no difference in the air-bone gap and air conduction hearing threshold levels between the two groups before treatment(P>0.05),and the hearing indexes of the patch group were significantly lower than those of the control group 3 months after treatment(P<0.05);the dry ear rate in the patch group was significantly higher than that of the control group after treatment(85.11%vs.67.39%),and the total incidence of complications was also significantly lower than that of the control group(6.38%vs.21.74%),with P<0.05.Conclusion:The simple egg membrane patch bridging method is effective in repairing tympanic membrane perforation,which can effectively improve patients’hearing levels and reduce the occurrence of post-treatment complications.Thus,it is worth popularizing and applying in the clinic.展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion excha...1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck展开更多
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
Objective The prevalence of carbapenem-resistant Klebsiella pneumoniae(CR-KP)is a global public health problem.It is mainly caused by the plasmid-carried carbapenemase gene.Outer membrane vesicles(OMVs)contain toxins ...Objective The prevalence of carbapenem-resistant Klebsiella pneumoniae(CR-KP)is a global public health problem.It is mainly caused by the plasmid-carried carbapenemase gene.Outer membrane vesicles(OMVs)contain toxins and other factors involved in various biological processes,includingβ-lactamase and antibiotic-resistance genes.This study aimed to reveal the transmission mechanism of OMV-mediated drug resistance of Klebsiella(K.)pneumoniae.Methods We selected CR-KP producing K.pneumoniae carbapenemase-2(KPC-2)to study whether they can transfer resistance genes through OMVs.The OMVs of CR-KP were obtained by ultracentrifugation,and incubated with carbapenem-sensitive K.pneumoniae for 4 h.Finally,the carbapenem-sensitive K.pneumoniae was tested for the presence of bla_(KPC-2)resistance gene and its sensitivity to carbapenem antibiotics.Results The existence of OMVs was observed by the electron microscopy.The extracted OMVs had bla_(KPC-2)resistance gene.After incubation with OMVs,bla_(KPC-2)resistance gene was detected in sensitive K.pneumoniae,and it became resistant to imipenem and meropenem.Conclusion This study demonstrated that OMVs isolated from KPC-2-producing CR-KP could deliver bla_(KPC-2)to sensitive K.pneumoniae,allowing the bacteria to produce carbapenemase,which may provide a novel target for innovative therapies in combination with conventional antibiotics for treating carbapenem-resistant Enterobacteriaceae.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (...Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.展开更多
A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkli...A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkling wavelength,amplitude and angle are obtained in terms of the stress extremum method. A numerical analysis approach-directly disturbing method is proposed to analyze the configuration parameters of shear membrane wrinkles by introducing out-of-plane disturbing forces to trigger wrinkle formation,while it timely removes the applied forces in order to eliminate the effect of disturbing forces on analytical results. The simulation results agree well with analytical results,which demonstrate that the proposed approach is capable for analyzing the membrane wrinkles with good accuracy.展开更多
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous ...A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium.展开更多
1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting a...1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients展开更多
A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide i...A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.展开更多
The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged...The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.展开更多
To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-...To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-particles.Neat PVDF membrane was prepared and its property was also compared with that of the modified membranes.Membrane permeation flux and anti-fouling performance were measured using a membrane cell.The contact angle between water and membrane surface was detected in order to denote the membrane hydrophilicity.Membrane morphology and surface structure were examined by atomic-force microscopy(AFM)and scanning electron microscopy(SEM).Experimental results showed that modified membranes had higher permeation fluxes than that of the neat PVDF membrane.The addition of nano-particles altered membrane surface morphology and increased surface roughness.Due to the hydrophilicity of nano-particles,however,the membrane anti-fouling performance was improved instead of worsened.The entrapped membrane exhibited better anti-fouling performance than the deposited membrane and the neat membrane.展开更多
It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders o...It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.展开更多
In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performan...In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performance of polyurethane–zeolite 3A, ZSM-5 mixed matrix membranes.The basis of the experiments was a rotatable central composite design(CCD).The three independent variables studied were: zeolite content(0–24 wt%), operating temperature(25–45 ℃) and operating pressure(0.2–0.1 MPa).The effects of these three variables on the selectivity and permeability membranes were studied by the analysis of variance(ANOVA).Optimal conditions for the enhancement of gas separation performances of polyurethane–3A zeolite were found to be 18 wt%, 30 ℃ and 0.8 MPa respectively.Under these conditions, the permeabilities of carbon dioxide, methane, oxygen and nitrogen gases were measured at 138.4, 22.9, 15.7 and 6.4 Barrer respectively while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 5.8, 22.5 and 2.5, respectively.Also, the optimal conditions for improvement of the gas separation performance of polyurethane–ZSM 5 were found to be 15.64 wt%, 30 ℃ and 4 bar.The permeabilities of these four gases(i.e.carbon dioxide, methane, oxygen and nitrogen) were 164.7, 21.2, 21.5 and 8.1 Barrer while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 7.8, 20.6 and 2.7 respectively.展开更多
A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SE...A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.展开更多
Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristi...Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristics of the membrane were investigated by scanning electron microscopy and 3D rotational microscopy. The preparing conditions include the amounts of drying control chemical additives (DCCA), sintering procedure and sol-gel concentration. The results showed that PVA is a good crack-preventing reagent and the morphology of supported membranes was affected by ninny factors, including Al2O3 concentration, PVA/Al2O3 ratio, heating rate, membrane thickness and intrinsic defects of the substrate surface.展开更多
Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the ...On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the analogue method, because the membrane effect was not omitted during the ending deployment process of the radial rib antenna. The expressions of the bar element’s section area and density were obtained, while the expression of the stress state during the ending deployment process of antenna was attained. During the establishment process of the analogue method, the analysis method of the net shell structure was employed. Moreover, during the backward deduction of membrane stress, the continuation method was adopted. Because the expression of the membrane stress state can realize the analysis on the antenna membrane state, this research has great significance of theoretical direction to the normal operation of the space deployable antenna.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
文摘Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital between September 2022 and October 2023 were selected and divided into two groups according to the random number table method.The control group implemented the conventional treatment(n=46 cases),and the patch group adopted the simple egg membrane patch bridging method(n=47 cases).The healing rate of the tympanic membrane,the air-bone gap,the air conduction hearing threshold,the dry ear rate,and the incidence of complications in both groups were compared before and after treatment.Results:The healing rate of the tympanic membrane in the patch group was significantly higher than that of the control group(95.75%vs.76.09%),with P<0.05;there was no difference in the air-bone gap and air conduction hearing threshold levels between the two groups before treatment(P>0.05),and the hearing indexes of the patch group were significantly lower than those of the control group 3 months after treatment(P<0.05);the dry ear rate in the patch group was significantly higher than that of the control group after treatment(85.11%vs.67.39%),and the total incidence of complications was also significantly lower than that of the control group(6.38%vs.21.74%),with P<0.05.Conclusion:The simple egg membrane patch bridging method is effective in repairing tympanic membrane perforation,which can effectively improve patients’hearing levels and reduce the occurrence of post-treatment complications.Thus,it is worth popularizing and applying in the clinic.
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金Supported by a grant from Chinese Pastdoctoral Foundation
文摘1 INTRODUCTIONRapid and precise methods to obtain the diffusion coefficients of counter-ions are im-portant for the characterization of ion exchange membranes.Many theoreticaldescriptions of ion transport in ion exchange membranes have been developed by usingthe principles of irreversible thermodynamics,or the Nernst-Planck equations.Fick’s law can also be used for the description of the transport of ions with equaldiffusivity.However,for counter-ions of different diffusivities,Nerst-Planck
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金supported by the National Natural Science Foundation of China(No.31771189)the Wuhan Health Commission(No.WX18C17 and No.WX19Q31)the Natural Science Foundation of Hubei Province,China(No.2017CFA065 and No.WJ2019H378).
文摘Objective The prevalence of carbapenem-resistant Klebsiella pneumoniae(CR-KP)is a global public health problem.It is mainly caused by the plasmid-carried carbapenemase gene.Outer membrane vesicles(OMVs)contain toxins and other factors involved in various biological processes,includingβ-lactamase and antibiotic-resistance genes.This study aimed to reveal the transmission mechanism of OMV-mediated drug resistance of Klebsiella(K.)pneumoniae.Methods We selected CR-KP producing K.pneumoniae carbapenemase-2(KPC-2)to study whether they can transfer resistance genes through OMVs.The OMVs of CR-KP were obtained by ultracentrifugation,and incubated with carbapenem-sensitive K.pneumoniae for 4 h.Finally,the carbapenem-sensitive K.pneumoniae was tested for the presence of bla_(KPC-2)resistance gene and its sensitivity to carbapenem antibiotics.Results The existence of OMVs was observed by the electron microscopy.The extracted OMVs had bla_(KPC-2)resistance gene.After incubation with OMVs,bla_(KPC-2)resistance gene was detected in sensitive K.pneumoniae,and it became resistant to imipenem and meropenem.Conclusion This study demonstrated that OMVs isolated from KPC-2-producing CR-KP could deliver bla_(KPC-2)to sensitive K.pneumoniae,allowing the bacteria to produce carbapenemase,which may provide a novel target for innovative therapies in combination with conventional antibiotics for treating carbapenem-resistant Enterobacteriaceae.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.
基金Sponsored by the National Natural Science Foundation of China (Grant No.51078114)the Doctoral Program of Higher Education of China (Grant No.2012302120058)
文摘A stress extremum method is developed based on Von Karman equations for analysis of membrane wrinkles in this paper. A mechanical model is also established for analyzing shear membrane wrinkles. Expressions of wrinkling wavelength,amplitude and angle are obtained in terms of the stress extremum method. A numerical analysis approach-directly disturbing method is proposed to analyze the configuration parameters of shear membrane wrinkles by introducing out-of-plane disturbing forces to trigger wrinkle formation,while it timely removes the applied forces in order to eliminate the effect of disturbing forces on analytical results. The simulation results agree well with analytical results,which demonstrate that the proposed approach is capable for analyzing the membrane wrinkles with good accuracy.
基金supported by the National Natural Science Foundation of China (Grant No. 50779012)
文摘A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium.
基金Supported by the Post-doctoral Foundation of China
文摘1 INTRODUCTIONKnowledge of the basic transport phenomena of ions in an ion exchange membrane isimportant for the application of such a membrane.Various studies on the developmentof mathematical models for predicting and correlating membrane transport rate havebeen published in recent years.More exact estimation of the diffusion coefficientshas been the subject of chief concern in many of these papers.For a bi-ionic systemwith the same valence,Sato et al.gave a method for estimating diffusion coefficients
文摘A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.
基金National Natural Science Foundation of China,Grant/Award Numbers:12304265,92372113,22309059China Postdoctoral Science Foundation,Grant/Award Number:2023MD744237+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China,Grant/Award Number:20240514the Department of Science and Technology of Liaoning Province,Grant/Award Number:2022-MS-195。
文摘The relentless pursuit of sustainable and safe energy storage technologies hasdriven a departure from conventional lithium-based batteries toward other relevantalternatives. Among these, aqueous batteries have emerged as a promisingcandidate due to their inherent properties of being cost-effective, safe,environmentally friendly, and scalable. However, traditional aqueous systemshave faced limitations stemming from water's narrow electrochemical stabilitywindow (-1.23 V), severely constraining their energy density and viability inhigh-demand applications. Recent advancements in decoupling aqueous batteriesoffer a novel solution to overcome this challenge by separating the anolyteand catholyte, thereby expanding the theoretical operational voltage windowto over 3 V. One key component of this innovative system is the ion-selectivemembrane (ISM), acting as a barrier to prevent undesired crossover betweenelectrolytes. This review provides a comprehensive overview of recent advancementsin decoupling aqueous batteries, emphasizing the application of varioustypes of ISMs. Moreover, we summarize different specially designed ISMs andtheir performance attributes. By addressing the current challenges ISMs face,the review outlines potential pathways for future enhancement and developmentof aqueous decoupling batteries.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA06Z303)the National Natural Science Foundation of China(Grant No.50778050)+2 种基金the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period(Grant No.2006BAJ08B09)the National Creative Research Groups(Grant No.50821002)the Key Scientific and Technological Project of Heilongjiang Province(Grant No.GB06C20403)
文摘To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-particles.Neat PVDF membrane was prepared and its property was also compared with that of the modified membranes.Membrane permeation flux and anti-fouling performance were measured using a membrane cell.The contact angle between water and membrane surface was detected in order to denote the membrane hydrophilicity.Membrane morphology and surface structure were examined by atomic-force microscopy(AFM)and scanning electron microscopy(SEM).Experimental results showed that modified membranes had higher permeation fluxes than that of the neat PVDF membrane.The addition of nano-particles altered membrane surface morphology and increased surface roughness.Due to the hydrophilicity of nano-particles,however,the membrane anti-fouling performance was improved instead of worsened.The entrapped membrane exhibited better anti-fouling performance than the deposited membrane and the neat membrane.
基金This work was supported by the National Natural Science Foundation of China
文摘It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.
文摘In the present work, the response surface method software was used with five measurement levels with three factors.These were applied for the optimization of operating parameters that affected gas separation performance of polyurethane–zeolite 3A, ZSM-5 mixed matrix membranes.The basis of the experiments was a rotatable central composite design(CCD).The three independent variables studied were: zeolite content(0–24 wt%), operating temperature(25–45 ℃) and operating pressure(0.2–0.1 MPa).The effects of these three variables on the selectivity and permeability membranes were studied by the analysis of variance(ANOVA).Optimal conditions for the enhancement of gas separation performances of polyurethane–3A zeolite were found to be 18 wt%, 30 ℃ and 0.8 MPa respectively.Under these conditions, the permeabilities of carbon dioxide, methane, oxygen and nitrogen gases were measured at 138.4, 22.9, 15.7 and 6.4 Barrer respectively while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 5.8, 22.5 and 2.5, respectively.Also, the optimal conditions for improvement of the gas separation performance of polyurethane–ZSM 5 were found to be 15.64 wt%, 30 ℃ and 4 bar.The permeabilities of these four gases(i.e.carbon dioxide, methane, oxygen and nitrogen) were 164.7, 21.2, 21.5 and 8.1 Barrer while the CO_2/CH_4, CO_2/N_2 and O_2/N_2 selectivities were 7.8, 20.6 and 2.7 respectively.
文摘A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.
基金Project supported by National Natural Science Foundation ofChina (Grant No .20373040) Science Foundation of Science andTechnology Commission of Zhejiang Province ( Grant No .0252nm101) Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant No .0452nm019)
文摘Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristics of the membrane were investigated by scanning electron microscopy and 3D rotational microscopy. The preparing conditions include the amounts of drying control chemical additives (DCCA), sintering procedure and sol-gel concentration. The results showed that PVA is a good crack-preventing reagent and the morphology of supported membranes was affected by ninny factors, including Al2O3 concentration, PVA/Al2O3 ratio, heating rate, membrane thickness and intrinsic defects of the substrate surface.
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.19682003)
文摘On the basis of choosing the basic element as the bar and choosing the basic mesh as the triangle as well as supposing the conditions of the element, the membrane states of an antenna reflector were researched by the analogue method, because the membrane effect was not omitted during the ending deployment process of the radial rib antenna. The expressions of the bar element’s section area and density were obtained, while the expression of the stress state during the ending deployment process of antenna was attained. During the establishment process of the analogue method, the analysis method of the net shell structure was employed. Moreover, during the backward deduction of membrane stress, the continuation method was adopted. Because the expression of the membrane stress state can realize the analysis on the antenna membrane state, this research has great significance of theoretical direction to the normal operation of the space deployable antenna.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.