The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 35...The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.展开更多
The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k...The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k Pa.The total solubility of H_(2)S increased with higher temperatures,lower pressures,and reduced water content.The reaction equilibrium thermodynamic model was used to correlate the solubility data.The results indicate that the chemical reaction equilibrium constant decrease with increasing water content and temperature,whereas Henry constant increase with increasing water content and temperature.Compared with other ionic liquids,H_(2)S exhibits a higher physical absorption enthalpy and a lower chemical absorption enthalpy in[Bmmorp][Ac]aqueous solution.This suggests that[Bmmorp][Ac]has a strong physical affinity for H_(2)S and low energy requirement for desorption.Quantum chemical methods were used to investigate the molecular mechanism of H_(2)S absorption in ionic liquids.The interaction energy analysis revealed that the binding of H_(2)S with the ionic liquid in a1:2 ratio is more stable.Detailed analyses by the methods of the interaction region indicator and the atoms in molecules were conducted to the interactions between H_(2)S and the ionic liquid.展开更多
The adjustable parameters in the popular conductor-like screening model for real solvents(COSMO-RS)within the Amsterdam density functional(ADF)framework have been re-optimized to fit for the systems containing ionic l...The adjustable parameters in the popular conductor-like screening model for real solvents(COSMO-RS)within the Amsterdam density functional(ADF)framework have been re-optimized to fit for the systems containing ionic liquids(ILs).To get the optimal values of misfit energy constant a^0,hydrogen bond coefficient c_(hb)and effective contact surface area of a segment a_(eff),2283 activity coefficient data points at infinite dilution and 1433 CO_2 solubility data points exhaustively collected from references were used as training set.The average relative deviations(ARDs)of activity coefficients at infinite dilution and CO_2 solubility between experimental data and predicted values are 32.22%and17.61%,respectively,both of which are significantly lower than the original COSMO-RS versions.Predictions for other activity coefficients of solutes in ILs,solubility data of CO_2 in pure ILs and the binary mixtures of ILs at either high or low temperatures,and vapor–liquid equilibrium(VLE)for binary systems involving ILs have also been performed to demonstrate the validity of the parameterization of COSMO-RS model for ILs.The results showed that the predicted results by COSMO-RS model with the new optimized parameters are in much better agreement with experimental data than those by the original versions over a wide temperature and pressure range.The COSMO-RS model for ILs presented in this work improves the prediction accuracy of thermodynamic properties for the systems containing ILs,which is always highly desirable for general chemical engineers.展开更多
A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehen...A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.展开更多
On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-d...On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.展开更多
A suitable ionic liquid for methyl chloride drying experiment was screened out from 210 ionic liquids by COSMO-RS model.Moreover,the experimental mechanism of ionic liquids drying is further explained by the COSMO-RS ...A suitable ionic liquid for methyl chloride drying experiment was screened out from 210 ionic liquids by COSMO-RS model.Moreover,the experimental mechanism of ionic liquids drying is further explained by the COSMO-RS model,and it is further confirmed by analyzing the binding energy.The solubility of methyl chloride in[EMIM][BF4]and TEG and[EMIM][BF4]+H2O was completed,and the experimental results well proved the reliability of the UNIFAC-Lei model.The unknown interaction parameters were obtained through the solubility data of this work and the experimental data in the literatures.The methyl chloride drying experiment was completed in the laboratory,and the water content of the methyl chloride can be reduced to below 200 ppm.The simulation of the methyl chloride drying process using[EMIM][BF4]or TEG as absorbents was carried out by ASPEN software on an industrial scale.The final simulation results show that the[EMIM][BF4]drying process has lower energy consumption and better drying effect.展开更多
Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltra...Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.展开更多
The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammab...The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.展开更多
This work presents the dynamical modelling of cardiac electrical activity using bidomain approach. It focuses on the effects of variation of the ionic model parameters on cardiac wave propagation. Cardiac electrical a...This work presents the dynamical modelling of cardiac electrical activity using bidomain approach. It focuses on the effects of variation of the ionic model parameters on cardiac wave propagation. Cardiac electrical activity is governed by partial differential equations coupled to a system of ordinary differential equations. Numerical simulation of these equations is computationally expensive due to their non-linearity and stiffness. Nevertheless, we adopted the bidomain model due to its ability to reflect the actual cardiac wave propagation. The derived bidomain equations coupled with FitzHugh-Nagumo’s ionic equations were time-discretized using explicit forward Euler method and space-discretized using 2-D network modelling to obtain linearized equations for transmembrane potential Vm, extracellular potential φe and gating variable w. We implemented the discretized model and performed simulation experiments to study the effects of variation of ionic model parameters on the propagation of electrical wave across the cardiac tissue. Time characteristic of transmembrane potential, Vm, in the normal cardiac tissue was obtained by setting the values of ionic model parameters to 0.2, 0.2, 0.7 and 0.8 for excitation rate constant ε1, recovery rate constant ε2, recovery decay constant γ and excitation decay constant β respectively. Changing the values of ε1, ε2 to 0.04 and 0.28 respectively, the obtained Vm showed a time dilation at 0.04 indicating cardiac arrhythmia but no significant change to Vm was observed at 0.28. Also, changing β to 0.3 and 1.1 and γ to 0.4 and 1.2 sequentially, there was no significant change to the time characteristic of Vm. The obtained results revealed that only decrease in ε1, ε2 impacted significantly on the cardiac wave propagation.展开更多
A mathematical model of vibrissa motoneurons (vMN), which has been developed by Harish and Golomb, can show repetitive spiking in response to a transient external stimulation. The vMN model is described by a system of...A mathematical model of vibrissa motoneurons (vMN), which has been developed by Harish and Golomb, can show repetitive spiking in response to a transient external stimulation. The vMN model is described by a system of nonlinear ordinary differential equations based on the Hodgkin-Huxley scheme. The vMN model is regulated by various types of ionic conductances, such as persistent sodium, transient sodium, delayed-rectifier potassium, and slow ionic conductances (e.g., slowly activating potassium afterhyperpolarization (AHP) conductance and h conductance). In the present study, a numerical simulation analysis of the vMN model was performed to investigate the effect of variations in the transient sodium and the slow ionic conductance values on the response of the vMN model to a transient external stimulation. Numerical simulations revealed that when both the transient sodium and the AHP conductances are eliminated, the vMN model shows a bistable behavior (i.e., a stimulation-triggered transition between dynamic states). In contrast, none of the following induce the transition alone: 1) elimination of the transient sodium conductance;2) elimination of the AHP conductance;3) elimination of the h conductance;or 4) elimination of both the transient sodium and the h conductances.展开更多
Activity coefficients at infinite dilution, γ ∞ i, were calculated for 12 solutes, with organic solutes including linear alcohols (methanol, ethanol, propanol), linear alkanes (heptane, octane), benzene, toluene, cy...Activity coefficients at infinite dilution, γ ∞ i, were calculated for 12 solutes, with organic solutes including linear alcohols (methanol, ethanol, propanol), linear alkanes (heptane, octane), benzene, toluene, cyclohexane, 1, 2-dichloroethane, trichloroethylene, acetonitrile and carbon tetrachloride. The values of γ ∞ i were determined via either thermodynamic or artificial neural network modelling at different temperatures. A comparison between extracted results from these two methods confirmed that experimental and predicted results are roughly the same. The accuracy of predicted results proves this model is fully compatible with a wide range of solutes, and it can readily be used as an alternative to conventional gas-liquid chromatography for the measurements of activity coefficient at infinite dilution.展开更多
A previous study proposed a mathematical model of A-type horizontal cells in the rabbit retina. This model, which was constructed based on the Hodgkin-Huxley model, was described by a system of nonlinear ordinary diff...A previous study proposed a mathematical model of A-type horizontal cells in the rabbit retina. This model, which was constructed based on the Hodgkin-Huxley model, was described by a system of nonlinear ordinary differential equations. The model contained five types of voltage-dependent ionic conductances: sodium, calcium, delayed rectifier potassium, transient outward potassium, and anomalous rectifier potassium conductances. The previous study indicated that when the delayed rectifier potassium conductance had a small value, depolarizing stimulation could change the dynamic state of the model from a hyperpolarized steady state to a depolarized steady state. However, how this change was affected by variations in the ionic conductance values was not clarified in detail in the previous study. To clarify this issue, in the present study, we performed numerical simulation analysis of the model and revealed the differences among the five types of ionic conductances.展开更多
A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Hu...A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Huxley formalism. The type-A mVNn model contains several ionic conductances, such as the sodium conductance, calcium conductance, delayed-rectifier potassium conductance, transient potassium conductance, and calcium-dependent potassium conductance. The previous study revealed that spontaneous repetitive spiking in the type-A mVNn model can be suppressed by hyperpolarizing stimulation. However, how this suppression is affected by the ionic conductances has not been clarified in the previous study. The present study performed numerical simulation analysis of the type-A mVNn model to clarify how variations in the different ionic conductance values affect the suppression of repetitive spiking. The present study revealed that the threshold for the transition from a repetitive spiking state to a quiescent state is differentially sensitive to variations in the ionic conductances among the different types of ionic conductance.展开更多
In this work, the COSMO-RS (conductor like screening model for real solvent) model algorithm was derived from the modified Rachford rice method. It could be more helpful to investigate the phase behavior of binary s...In this work, the COSMO-RS (conductor like screening model for real solvent) model algorithm was derived from the modified Rachford rice method. It could be more helpful to investigate the phase behavior of binary systems with the help of quantum chemical calculation at 6-31G* basis set. COSMO-RS was used to predict solubility of binary mixture involving non-ILs (ionic liquids), and ILs systems are: benzyl ethylamine + glycerol system (Type-Ⅰ), nitro methane + cyclohexane system (Type-Ⅱ), dipropylamine + water system (Type-Ⅲ), 1,2-ethanediol + thiophene system (Type-Ⅳ), [1,2-DMIM] [salicylate] + thiophene (Type-Ⅳ), and [EMIM] [NO3] + thiophene (Type-Ⅳ). Totally 15 cations with 27 anions were used for generating 405 binary LLE (liquid liquid equilibrium) systems involving thiophene. However, the predicted COSMO-RS values are consisting with the reported experimental values. Furthermore, the immiscibility gap at 298.15 K was determined and compared for various ILs. It was found that l-butylpyrrolidinium, l-octylquinolinium, 1-octylpyridinium and 1-octyl-3-methylimidazolium based cations are most suitable for thiophene extraction from any liquid mixture.展开更多
Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications ha...Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.展开更多
PNP models with an arbitrary number of positively charged ion species and one negatively charged ion species are studied in this paper under the assumption that positively charged ion species have the same valence and...PNP models with an arbitrary number of positively charged ion species and one negatively charged ion species are studied in this paper under the assumption that positively charged ion species have the same valence and the permanent charge is a piecewise constant function. The permanent charge plays the key role in many functions of an ion channel, such as selectivity and gating. In this paper, using the geometric singular perturbation theory, a flux ratio independent of the permanent charge is proved.展开更多
A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and com...A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.展开更多
基金Financial support from the National Natural Science Foundation of China(21775081)Shandong Province Natural Science Foundation(ZR2020MB145)。
文摘The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed.
基金Financial support from the National Natural Science Foundation of China(21775081)Shandong Province Natural Science Foundation(ZR2020MB145)。
文摘The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k Pa.The total solubility of H_(2)S increased with higher temperatures,lower pressures,and reduced water content.The reaction equilibrium thermodynamic model was used to correlate the solubility data.The results indicate that the chemical reaction equilibrium constant decrease with increasing water content and temperature,whereas Henry constant increase with increasing water content and temperature.Compared with other ionic liquids,H_(2)S exhibits a higher physical absorption enthalpy and a lower chemical absorption enthalpy in[Bmmorp][Ac]aqueous solution.This suggests that[Bmmorp][Ac]has a strong physical affinity for H_(2)S and low energy requirement for desorption.Quantum chemical methods were used to investigate the molecular mechanism of H_(2)S absorption in ionic liquids.The interaction energy analysis revealed that the binding of H_(2)S with the ionic liquid in a1:2 ratio is more stable.Detailed analyses by the methods of the interaction region indicator and the atoms in molecules were conducted to the interactions between H_(2)S and the ionic liquid.
基金financially supported by the National Natural Science Foundation of China under Grants (Nos. 21476009, 21406007 and U1462104)
文摘The adjustable parameters in the popular conductor-like screening model for real solvents(COSMO-RS)within the Amsterdam density functional(ADF)framework have been re-optimized to fit for the systems containing ionic liquids(ILs).To get the optimal values of misfit energy constant a^0,hydrogen bond coefficient c_(hb)and effective contact surface area of a segment a_(eff),2283 activity coefficient data points at infinite dilution and 1433 CO_2 solubility data points exhaustively collected from references were used as training set.The average relative deviations(ARDs)of activity coefficients at infinite dilution and CO_2 solubility between experimental data and predicted values are 32.22%and17.61%,respectively,both of which are significantly lower than the original COSMO-RS versions.Predictions for other activity coefficients of solutes in ILs,solubility data of CO_2 in pure ILs and the binary mixtures of ILs at either high or low temperatures,and vapor–liquid equilibrium(VLE)for binary systems involving ILs have also been performed to demonstrate the validity of the parameterization of COSMO-RS model for ILs.The results showed that the predicted results by COSMO-RS model with the new optimized parameters are in much better agreement with experimental data than those by the original versions over a wide temperature and pressure range.The COSMO-RS model for ILs presented in this work improves the prediction accuracy of thermodynamic properties for the systems containing ILs,which is always highly desirable for general chemical engineers.
基金partly supported by the Research Council of Norway through CLIMIT program (MCIL-CO_2 project, 215732)
文摘A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.
基金Supported by the National Natural Science Foundation of China(50890184,51276010)the National Basic Research Program of China(2010CB227304)
文摘On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.
基金financially supported by the National Natural Science Foundation of China(No.U1862103)and(No.21961160740)
文摘A suitable ionic liquid for methyl chloride drying experiment was screened out from 210 ionic liquids by COSMO-RS model.Moreover,the experimental mechanism of ionic liquids drying is further explained by the COSMO-RS model,and it is further confirmed by analyzing the binding energy.The solubility of methyl chloride in[EMIM][BF4]and TEG and[EMIM][BF4]+H2O was completed,and the experimental results well proved the reliability of the UNIFAC-Lei model.The unknown interaction parameters were obtained through the solubility data of this work and the experimental data in the literatures.The methyl chloride drying experiment was completed in the laboratory,and the water content of the methyl chloride can be reduced to below 200 ppm.The simulation of the methyl chloride drying process using[EMIM][BF4]or TEG as absorbents was carried out by ASPEN software on an industrial scale.The final simulation results show that the[EMIM][BF4]drying process has lower energy consumption and better drying effect.
基金financially supported by National Key Research and Develop Program of China (2017YFA0206803)National Science Fund for Excellent Young Scholars (21722610)+2 种基金National Natural Science Foundation of China (21676277)Key Program of National Natural Science Foundation of China (91434203)CAS-SAFEA International PartnershipProgramforCreativeResearchTeams (20140491518)
文摘Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.
基金the financial support from Max Planck Society,Germany,for the Computer-Aided Material and Process Design(CAMPD)project
文摘The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.
文摘This work presents the dynamical modelling of cardiac electrical activity using bidomain approach. It focuses on the effects of variation of the ionic model parameters on cardiac wave propagation. Cardiac electrical activity is governed by partial differential equations coupled to a system of ordinary differential equations. Numerical simulation of these equations is computationally expensive due to their non-linearity and stiffness. Nevertheless, we adopted the bidomain model due to its ability to reflect the actual cardiac wave propagation. The derived bidomain equations coupled with FitzHugh-Nagumo’s ionic equations were time-discretized using explicit forward Euler method and space-discretized using 2-D network modelling to obtain linearized equations for transmembrane potential Vm, extracellular potential φe and gating variable w. We implemented the discretized model and performed simulation experiments to study the effects of variation of ionic model parameters on the propagation of electrical wave across the cardiac tissue. Time characteristic of transmembrane potential, Vm, in the normal cardiac tissue was obtained by setting the values of ionic model parameters to 0.2, 0.2, 0.7 and 0.8 for excitation rate constant ε1, recovery rate constant ε2, recovery decay constant γ and excitation decay constant β respectively. Changing the values of ε1, ε2 to 0.04 and 0.28 respectively, the obtained Vm showed a time dilation at 0.04 indicating cardiac arrhythmia but no significant change to Vm was observed at 0.28. Also, changing β to 0.3 and 1.1 and γ to 0.4 and 1.2 sequentially, there was no significant change to the time characteristic of Vm. The obtained results revealed that only decrease in ε1, ε2 impacted significantly on the cardiac wave propagation.
文摘A mathematical model of vibrissa motoneurons (vMN), which has been developed by Harish and Golomb, can show repetitive spiking in response to a transient external stimulation. The vMN model is described by a system of nonlinear ordinary differential equations based on the Hodgkin-Huxley scheme. The vMN model is regulated by various types of ionic conductances, such as persistent sodium, transient sodium, delayed-rectifier potassium, and slow ionic conductances (e.g., slowly activating potassium afterhyperpolarization (AHP) conductance and h conductance). In the present study, a numerical simulation analysis of the vMN model was performed to investigate the effect of variations in the transient sodium and the slow ionic conductance values on the response of the vMN model to a transient external stimulation. Numerical simulations revealed that when both the transient sodium and the AHP conductances are eliminated, the vMN model shows a bistable behavior (i.e., a stimulation-triggered transition between dynamic states). In contrast, none of the following induce the transition alone: 1) elimination of the transient sodium conductance;2) elimination of the AHP conductance;3) elimination of the h conductance;or 4) elimination of both the transient sodium and the h conductances.
文摘Activity coefficients at infinite dilution, γ ∞ i, were calculated for 12 solutes, with organic solutes including linear alcohols (methanol, ethanol, propanol), linear alkanes (heptane, octane), benzene, toluene, cyclohexane, 1, 2-dichloroethane, trichloroethylene, acetonitrile and carbon tetrachloride. The values of γ ∞ i were determined via either thermodynamic or artificial neural network modelling at different temperatures. A comparison between extracted results from these two methods confirmed that experimental and predicted results are roughly the same. The accuracy of predicted results proves this model is fully compatible with a wide range of solutes, and it can readily be used as an alternative to conventional gas-liquid chromatography for the measurements of activity coefficient at infinite dilution.
文摘A previous study proposed a mathematical model of A-type horizontal cells in the rabbit retina. This model, which was constructed based on the Hodgkin-Huxley model, was described by a system of nonlinear ordinary differential equations. The model contained five types of voltage-dependent ionic conductances: sodium, calcium, delayed rectifier potassium, transient outward potassium, and anomalous rectifier potassium conductances. The previous study indicated that when the delayed rectifier potassium conductance had a small value, depolarizing stimulation could change the dynamic state of the model from a hyperpolarized steady state to a depolarized steady state. However, how this change was affected by variations in the ionic conductance values was not clarified in detail in the previous study. To clarify this issue, in the present study, we performed numerical simulation analysis of the model and revealed the differences among the five types of ionic conductances.
文摘A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Huxley formalism. The type-A mVNn model contains several ionic conductances, such as the sodium conductance, calcium conductance, delayed-rectifier potassium conductance, transient potassium conductance, and calcium-dependent potassium conductance. The previous study revealed that spontaneous repetitive spiking in the type-A mVNn model can be suppressed by hyperpolarizing stimulation. However, how this suppression is affected by the ionic conductances has not been clarified in the previous study. The present study performed numerical simulation analysis of the type-A mVNn model to clarify how variations in the different ionic conductance values affect the suppression of repetitive spiking. The present study revealed that the threshold for the transition from a repetitive spiking state to a quiescent state is differentially sensitive to variations in the ionic conductances among the different types of ionic conductance.
文摘In this work, the COSMO-RS (conductor like screening model for real solvent) model algorithm was derived from the modified Rachford rice method. It could be more helpful to investigate the phase behavior of binary systems with the help of quantum chemical calculation at 6-31G* basis set. COSMO-RS was used to predict solubility of binary mixture involving non-ILs (ionic liquids), and ILs systems are: benzyl ethylamine + glycerol system (Type-Ⅰ), nitro methane + cyclohexane system (Type-Ⅱ), dipropylamine + water system (Type-Ⅲ), 1,2-ethanediol + thiophene system (Type-Ⅳ), [1,2-DMIM] [salicylate] + thiophene (Type-Ⅳ), and [EMIM] [NO3] + thiophene (Type-Ⅳ). Totally 15 cations with 27 anions were used for generating 405 binary LLE (liquid liquid equilibrium) systems involving thiophene. However, the predicted COSMO-RS values are consisting with the reported experimental values. Furthermore, the immiscibility gap at 298.15 K was determined and compared for various ILs. It was found that l-butylpyrrolidinium, l-octylquinolinium, 1-octylpyridinium and 1-octyl-3-methylimidazolium based cations are most suitable for thiophene extraction from any liquid mixture.
文摘Ionic polymer-metal composites (IPMCs) are especially interesting electroactive polymers because they show large a deformation in the presence of a very low driving voltage (around 1 - 2 V) and several applications have recently been proposed. Normally a humid environment is required for the best operation, although some IPMCs can operate in a dry environment, after proper encapsulation or if a solid electrolyte is used in the manufacturing process. However, such solutions usually lead to increasing mechanical stiffness and to a reduction of actuation capabilities. In this study we focus on the behaviour of non-encapsulated IPMCs as actuators in dry environments, in order to obtain relevant information for design tasks linked to the development of active devices based on this kind of smart material. The non-linear response obtained in the characterisation tests is especially well-suited to modelling these actuators with the help of artificial neural networks (ANNs). Once trained with the help of characterisation data, such neural networks prove to be a precise simulation tool for describing IPMC response in dry environments.
文摘PNP models with an arbitrary number of positively charged ion species and one negatively charged ion species are studied in this paper under the assumption that positively charged ion species have the same valence and the permanent charge is a piecewise constant function. The permanent charge plays the key role in many functions of an ion channel, such as selectivity and gating. In this paper, using the geometric singular perturbation theory, a flux ratio independent of the permanent charge is proved.
基金Project(51374020)supported by the National Natural Science Foundation of China
文摘A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.