Using the data of ULF/ELF electric and magnetic wave field measured on board AUREOL-3 satellite, by the high resolution spectral analyses, one obtained for the first time the spatial measurement on the evidence of ion...Using the data of ULF/ELF electric and magnetic wave field measured on board AUREOL-3 satellite, by the high resolution spectral analyses, one obtained for the first time the spatial measurement on the evidence of ionospheric alfvén resonator. The result of the measurement indicates that there are 7. 8 Hz for fundamental frequency, 14 Hz for second resonant frequency in the electric field component, and also the spectral resonance structure, but not in the magnetic vertical component for the magnetic field components.展开更多
The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature va...The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variations on the Alfvén resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfvén resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi\|quadratic relation with the Alfvén field, which directly inspires the formation of cross\|spectrum between ULF waves and HF waves and results in spectral peaks at some gyro\|frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high\|speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.展开更多
The properties of the ionosphere Alfvén resonator (IAR) in the general case of an oblique geomagnetic field are investigated. The modes at the frequencies f = 0.2 - 10 Hz well localized within the ionosphere are ...The properties of the ionosphere Alfvén resonator (IAR) in the general case of an oblique geomagnetic field are investigated. The modes at the frequencies f = 0.2 - 10 Hz well localized within the ionosphere are considered, which are important for the lithosphere—ionosphere coupling. An attention is paid to the modes with quite high quality factors , where . A proper selection of calculated eigenfrequencies has been realized. Two independent simulation algorithms have been proposed. The resonant frequencies and the profiles of magnetic field components of the modes have been calculated. The modulation of electron and ion concentrations at the heights 170 - 230 km leads to essential shifting the resonant frequencies.展开更多
文摘Using the data of ULF/ELF electric and magnetic wave field measured on board AUREOL-3 satellite, by the high resolution spectral analyses, one obtained for the first time the spatial measurement on the evidence of ionospheric alfvén resonator. The result of the measurement indicates that there are 7. 8 Hz for fundamental frequency, 14 Hz for second resonant frequency in the electric field component, and also the spectral resonance structure, but not in the magnetic vertical component for the magnetic field components.
文摘The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variations on the Alfvén resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfvén resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi\|quadratic relation with the Alfvén field, which directly inspires the formation of cross\|spectrum between ULF waves and HF waves and results in spectral peaks at some gyro\|frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high\|speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
文摘The properties of the ionosphere Alfvén resonator (IAR) in the general case of an oblique geomagnetic field are investigated. The modes at the frequencies f = 0.2 - 10 Hz well localized within the ionosphere are considered, which are important for the lithosphere—ionosphere coupling. An attention is paid to the modes with quite high quality factors , where . A proper selection of calculated eigenfrequencies has been realized. Two independent simulation algorithms have been proposed. The resonant frequencies and the profiles of magnetic field components of the modes have been calculated. The modulation of electron and ion concentrations at the heights 170 - 230 km leads to essential shifting the resonant frequencies.