Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Th...Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.展开更多
To discuss the potential role of iridium(Ir)nanoparticles loaded under atmospheric and high pressures,we prepared a series of cata-lysts with the same active phase but different contents of 10wt%,20wt%,and 30wt%on gam...To discuss the potential role of iridium(Ir)nanoparticles loaded under atmospheric and high pressures,we prepared a series of cata-lysts with the same active phase but different contents of 10wt%,20wt%,and 30wt%on gamma-alumina for decomposition of hydrazine.Un-der atmospheric pressure,the performance of the catalyst was better when 30wt%of the Ir nanoparticles was used with chelating agent that had greater selectivity of approximately 27%.The increase in the reaction rate from 175 to 220 h^(−1)at higher Ir loading(30wt%)was due to a good dispersion of high-number active phases rather than an agglomeration surface.As a satisfactory result of this investigation at high pressure,Ir catalysts with different weight percentages showed the same stability against crushing and activity with a characteristic velocity of approxim-ately 1300 m/s.展开更多
A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catal...A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catalyst,the termetallic catalyst of PtIrAu811/Al2O3,with a Pt:Ir:Au atomic ratio of 8:1:1,exhibited higher NO decomposition and selectivity to N2.Transmission electron microscopy and X-ray diffraction were conducted to clarify the state of the supported metals and indicate three precious metals alloyed on the catalyst.In the study of NO-temperature programmed desorption,oxygen desorption on the PtIrAu811 catalyst shifted to the low temperature side compared to that on Pt/Al2O3,which correlated well with its higher catalytic performance in NO decomposition.展开更多
N2O is a promising green propellant and exhibits great potential for satellite propulsion systems. It is difficult for catalytic decomposition, which is an important way to initiate the propulsion process, to occur at...N2O is a promising green propellant and exhibits great potential for satellite propulsion systems. It is difficult for catalytic decomposition, which is an important way to initiate the propulsion process, to occur at temperatures below 600 °C due to the high activation energy of N2O. In this work, we report an Ir supported on rutile TiO2(Ir/r-TiO2) catalyst which exhibits a fairly high activity for high-concentration N2O decomposition. HAADF-STEM, H2-TPR, and XPS results indicate that highly dispersed Ir particles and improved oxygen mobility on the Ir/r-TiO2 could facilitate the decompo-sition of N2O and desorption of the adsorbed oxygen. Bridge-bonded peroxide intermediates were observed with in-situ DRIFT and herein, a detailed decomposition route is proposed.展开更多
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.展开更多
In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different no...In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.展开更多
The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-C...The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.展开更多
Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. ...Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst.展开更多
The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption o...The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.展开更多
The surface intermediate (C_2H_5^+ and CH_3C_6H_5^+) and the reactive pathway of nuclear alkylation of toluene with ethylene to para—ethyl toluene over Mg salt and phosphorus acid modified ZSM—5 zeolites have been s...The surface intermediate (C_2H_5^+ and CH_3C_6H_5^+) and the reactive pathway of nuclear alkylation of toluene with ethylene to para—ethyl toluene over Mg salt and phosphorus acid modified ZSM—5 zeolites have been studied by 1R and EPR methods.展开更多
The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibit...The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibited strong interaction with the fresh Mo2C/γ-Al2O3 catalyst and was adsorbed mainly on Moδ+ sites of fresh Mo2C/γ-Al2O3 catalyst. Moreover, CH3CN could affect the shifting of IR spectra for CO adsorption towards a lower wave number. The IR spectroscopic study on acetonitrile hydrogenation showed that CH3CN could be easily hydrogenated in the presence of H2 on the Mo2C/γ-Al2O3 catalyst. Furthermore, it was observed that CH3 CN could be selectively hydrogenated to imines on fresh Mo2C/γ-Al2O3 catalyst. Additionally, the active sites of fresh Mo2C/γ-Al2O3 catalyst might be covered with coke during the hydrogenation reaction of acetonitrile. The treatment of catalyst with hydrogen at 673 K could not completely remove coke deposits on the surface of the Mo2C/γ-Al2O3 catalyst.展开更多
Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were exa...Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.展开更多
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.
基金financially supported by the Key Program of the Chinese Academy of Science(grant no.KGZD-EW-T08)the National Basic Research Program of China(973 Program,2012CB215500)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(grant no.XDA09030104)
文摘Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.
文摘To discuss the potential role of iridium(Ir)nanoparticles loaded under atmospheric and high pressures,we prepared a series of cata-lysts with the same active phase but different contents of 10wt%,20wt%,and 30wt%on gamma-alumina for decomposition of hydrazine.Un-der atmospheric pressure,the performance of the catalyst was better when 30wt%of the Ir nanoparticles was used with chelating agent that had greater selectivity of approximately 27%.The increase in the reaction rate from 175 to 220 h^(−1)at higher Ir loading(30wt%)was due to a good dispersion of high-number active phases rather than an agglomeration surface.As a satisfactory result of this investigation at high pressure,Ir catalysts with different weight percentages showed the same stability against crushing and activity with a characteristic velocity of approxim-ately 1300 m/s.
文摘A termetallic catalyst of Pt-Ir-Au/Al2O3 for NOx decomposition was prepared by loading the metallic colloids in C2H5OH-H2O solution and a surfactant of polyvinyl pyrrolidone.Compared with an impregnated Pt/Al2O3 catalyst,the termetallic catalyst of PtIrAu811/Al2O3,with a Pt:Ir:Au atomic ratio of 8:1:1,exhibited higher NO decomposition and selectivity to N2.Transmission electron microscopy and X-ray diffraction were conducted to clarify the state of the supported metals and indicate three precious metals alloyed on the catalyst.In the study of NO-temperature programmed desorption,oxygen desorption on the PtIrAu811 catalyst shifted to the low temperature side compared to that on Pt/Al2O3,which correlated well with its higher catalytic performance in NO decomposition.
基金supported by the National Natural Science Foundation of China (21476229, 21376236, 21503264)~~
文摘N2O is a promising green propellant and exhibits great potential for satellite propulsion systems. It is difficult for catalytic decomposition, which is an important way to initiate the propulsion process, to occur at temperatures below 600 °C due to the high activation energy of N2O. In this work, we report an Ir supported on rutile TiO2(Ir/r-TiO2) catalyst which exhibits a fairly high activity for high-concentration N2O decomposition. HAADF-STEM, H2-TPR, and XPS results indicate that highly dispersed Ir particles and improved oxygen mobility on the Ir/r-TiO2 could facilitate the decompo-sition of N2O and desorption of the adsorbed oxygen. Bridge-bonded peroxide intermediates were observed with in-situ DRIFT and herein, a detailed decomposition route is proposed.
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.
基金supported by the National Natural Science Foundation of China(No.21106143,No.21277140)100-Talent Project of Dalian Institute of Chemical Physics(DICP)+1 种基金the Independent Innovation Foundation of State Key Laboratory of Catalysis(No.R201113)the Zhejiang Provincial Natural Science Foundation of China(LR12E02001)
文摘In this work, MoOx promoted Ir/SiO2 catalysts were prepared and used for the selective hydrogenolysis of tetrahydrofurfuryl alcohol (THFA) to 1,5-pentanediol in a continuous flow reactor. The effects of different noble metals (Ir, Pt, Pd, Ru, Rh), supports and Ir contents were screened. Among the investigated catalysts, 4 wt%Ir-MoOx/SiO2 with a Mo/Ir atomic ratio of 0.13 exhibited the best catalytic performance. The synergy between Ix particles and the partially reduced isolated MoOx species attached on them is essential for the excellent catalytic performance of Ix-MoOx/SiO2. The catalyst exhibited a better hydrogenolysis efficiency of THFA with the selectivity of 1,5-pentanediol of 65%-74% at a conversion of THFA of 70%-75% when the initial THFA concentration is ranging from 20 wt% and 40 wt%. And higher system pressure was also in favor of the conversion of THFA. During a stability test, the conversion of THFA and 1,5-pentanediol yield over Ix-MoOz/SiO2 decreased with reaction time, which can be explained by the leaching of Mo species during the reaction.
基金National Natural Science Foundation of China (20590360)New Century Excellent Talent Project of China (NCET-05-0783)
文摘The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.
基金This study was supported by the grant of 2004C31053 from the Ministry of Science and Technology of Zhejiang Province, China, and the grant of Y404305 from the Natural Science Foundation of Zhejiang Province, Chinathe grant of 20673101, 20673102 from National Natural Science Foundation of China.
文摘Partial oxidation of methane to syngas (POM) over Rh/SiO2 catalyst was investigated using in-situ FT-IR. When methane interacted with 1.0wt%Rh/SiO2 catalyst, it was dissociated to adsorbed hydrogen and CHx species. The adsorbed hydrogen atoms were transferred to SiO2 surface by "spill-over" and reacted with lattice oxygen to form surface -OH species. POM mechanism was investigated over Rh/SiO2 catalyst using in-situ FT-IR. It was found that CO2 was formed before CO could be detected when CH4 and O2 were introduced over the preoxidized Rh/SiO2 catalyst, whereas CO was detected before CO2 was formed over the prereduced Rh/SiO2 catalyst.
基金financially supported by the National Natural Science Foundation of China(No.20903054)Liaoning Provincial Natural Science Foundation(No.2014020107)+1 种基金Program for Liaoning excellent talents in university(No.LJQ2014041)sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(SRF for ROCS,SEM)
文摘The surface species formed from the adsorption of 1,3-butadiene and 1,3-butadiene hydrogenation over the fresh Mo2C/γ-Al2O3 catalyst was studied by in situ IR spectroscopy. It is found that 1,3-butadiene adsorption on the Mo2C/γ-Al2O3 catalyst mainly forms π-adsorbed butadiene(πs and πd) and σ-bonded surface species. These species are adsorbed mainly on the surface Moδ+(0<δ<2) sites as evidenced by co-adsorption of 1,3-butadiene and CO on the fresh Mo2C/γ-Al2O3 catalyst. The IR spectrometric analysis show that hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst produces mainly butane coupled with a small portion of butene. The selectivity of butene during the hydrogenation of 1,3-butadiene over fresh Mo2C/γ-Al2O3 catalyst might be explained by the adsorption mode of adsorbed 1,3-butadiene. Additionally, the active sites of the fresh Mo2C/γ-Al2O3 catalyst may be covered by coke during the hydrogenation reaction of 1,3-butadiene. The treatment with hydrogen at 673 K cannot remove the coke deposits from the surface of the Mo2C/γ-Al2O3 catalyst.
文摘The surface intermediate (C_2H_5^+ and CH_3C_6H_5^+) and the reactive pathway of nuclear alkylation of toluene with ethylene to para—ethyl toluene over Mg salt and phosphorus acid modified ZSM—5 zeolites have been studied by 1R and EPR methods.
基金financially supported by the National Natural Science Foundation of China (No. 21573101)the Liaoning Provincial Natural Science Foundation (No. 2014020107)+1 种基金the Program for Liaoning Excellent Talents in Universities (No. LJQ2014041)sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM)
文摘The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibited strong interaction with the fresh Mo2C/γ-Al2O3 catalyst and was adsorbed mainly on Moδ+ sites of fresh Mo2C/γ-Al2O3 catalyst. Moreover, CH3CN could affect the shifting of IR spectra for CO adsorption towards a lower wave number. The IR spectroscopic study on acetonitrile hydrogenation showed that CH3CN could be easily hydrogenated in the presence of H2 on the Mo2C/γ-Al2O3 catalyst. Furthermore, it was observed that CH3 CN could be selectively hydrogenated to imines on fresh Mo2C/γ-Al2O3 catalyst. Additionally, the active sites of fresh Mo2C/γ-Al2O3 catalyst might be covered with coke during the hydrogenation reaction of acetonitrile. The treatment of catalyst with hydrogen at 673 K could not completely remove coke deposits on the surface of the Mo2C/γ-Al2O3 catalyst.
基金supported by the Science and Research Reward Fund Program of Shandong Excellent Young Scientist of China (2007BS04033)
文摘Au/Al2O3 catalyst was prepared by a modified anion impregnation method and investigated with respect to its initial activity and stability for low-temperature CO oxidation.The activity changes of the catalyst were examined after separate treatment in CO+O2 or CO2 +O2 .Furthermore,in situ FT-IR studies were performed to investigate the species on the surface when CO or CO+O2 or CO2 +O2 was selected separately as adsorption gas.The results showed that Au/Al2O3 catalyst exhibited very high initial activity,but the catalytic activity was found to decrease gradually during CO oxidation with time on stream.And also,the activity of the catalyst declined after treatment in CO+O2 or CO2 +O2 .The formation and accumulation of carbonate-like species during CO oxidation or treatment in CO+O2 or CO2 +O2 might be mainly responsible for the activity decrease,which was reversible.