期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatio-temporal succession of iron and manganese microbial community in biological filter layer
1
作者 李绍峰 冉治霖 崔崇威 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期101-106,共6页
This paper studied the structure and dynamic change of microbial communities in bio-reactor for treating ground water which contained high concentration of iron and manganese.In this study,polymerase chain reaction(PC... This paper studied the structure and dynamic change of microbial communities in bio-reactor for treating ground water which contained high concentration of iron and manganese.In this study,polymerase chain reaction(PCR) denaturing gradient gel electrophoresis(DGGE) was used to evaluate the bacterial diversity.Different samples in spatio-temporal of bacterial community suceession in sands were analyzed,and the removal of iron and manganese were discussed.The results showed that a significant change in the community structure was observed during running time and the bio-reactor which designed by ourselves:the removal rate of iron and manganese could achieve 88.93%.The mass of microrganisms was decreasing,and the type of micro-organisms tended to stable with the increase of operating time.Besides,the change of mass and types of micro-organisms in sands was related to temperature.Along the depth of filter layer,the mass and types of micro-organisms were gradually decreasing.Further,pseudomonas were found to be the main microbiology by recycling the band sequencing and phylogenetic analysis.And with time increasing the mass and kind of bacteria were growing from less to more,finally to be stable. 展开更多
关键词 SPATIO-TEMPORAL SUCCESSION microbial community iron and manganese
下载PDF
Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane 被引量:7
2
作者 Neama A.Reiad Omar E.Abdel Salam +1 位作者 Ehab F.Abadir Farid A.Harraz 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第8期1425-1432,共8页
Microporous chitosan (CS) membranes were directly prepared by extraction of poly(ethylene glycol) (PEG) from CS/PEG blend membrane and were examined for iron and manganese ions removal from aqueous solutions. Th... Microporous chitosan (CS) membranes were directly prepared by extraction of poly(ethylene glycol) (PEG) from CS/PEG blend membrane and were examined for iron and manganese ions removal from aqueous solutions. The different variables affecting the adsorption capacity of the membranes such as contact time, pH of the sorption medium, and initial metal ion concentration in the feed solution were investigated on a batch adsorption basis. The affinity of CS/PEG blend membrane to adsorb Fe(II) ions is higher than that of Mn(II) ions, with adsorption equilibrium achieved after 60 min for Fe(II) and Mn(II) ions. By increasing CS]PEG ratio in the blend membrane the adsorption capacity of metal ions increased. Among all parameters, pH has the most significant effect on the adsorption capacity, particularly in the range of 2.9-5.9. The increase in CS/PEG ratio was found to enhance the adsorption capacity of the membranes. The effects of initial concentration of metal ions on the extent of metal ions removal were investigated in detail. The experimental data were better fitted to Freundlich equation than Langmuir. In addition, it was found that the iron and manganese ions adsorbed on the membranes can be effectively desorbed in 0.1 mol/L HCl solution (up to 98% desorption efficiency) and the blend membranes can be reused almost without loss of the adsorption capacity for iron and manganese ions. 展开更多
关键词 CHITOSAN blend membrane iron and manganese ions ADSORPTION
原文传递
Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China 被引量:1
3
作者 DONG De-ming ZHAO Xing-min +2 位作者 HUA Xiu-yi ZHANG Jing-jing WU Shi-ming 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第6期659-664,共6页
Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorpt... Natural surface coatings collected from natural substances (NSCsNS) were employed to study the roles of the main chemical components (iron oxides, manganese oxides, and other components) in controlling the adsorption of lead(Pb) and cadmium(Cd) in aquatic environments. The selective chemical extraction followed by the adsorption of Pb and Cd experiments and statistical analysis, were used to investigate the adsorption property of each component. Hydroxylamine hydrochloride was used to remove manganese oxides selectively, and sodium dithionite was used to extract iron oxides and manganese oxides. The result indicated that iron oxides and manganese oxides played an important role in the adsorption of Pb and Cd on NSCsNS, and the relative contribution was about two-thirds. The contribution of manganese oxides was the greatest, with a lesser role indicated for other components. The adsorption ability of manganese oxides for Pb and Cd was greater than that of iron oxides or other components for Pb and Cd. The Pb adsorption observed in each component was greater than Cd adsorption. 展开更多
关键词 Surface coating iron oxide and manganese oxide EXTRACTION Lead and cadmium adsorption
下载PDF
Investigation on Fe,Mn,Zn,Cu,Pb and Cd fractions in the natural surface coating samples and surficial sediments in the Songhua River,China 被引量:11
4
作者 GUO Shu-hai WANG Xiao-li +2 位作者 LI Yu CHEN Jie-jiang YANG Jun-cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1193-1198,共6页
Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of he... Natural surface coating samples (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the relationship between NSCSs and SSs in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fi'actions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (〉48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution patterns implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments. 展开更多
关键词 natural surface coating samples surficial sediments modified sequential extraction procedure heavy metals iron and manganese oxides organic matter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部