Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,...Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,the evolution behavior and mechanism of different reactive ICA under simulated BF smelting conditions were studied.The results show that the existence of more sillimanite and aluminosilicate and less active sites of metallic iron will weaken gasification reaction and carburization ability of ICA-1(containing 10%iron ore).It weakens the promoting effect of ICA-1 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron.The aluminosilicate with a high melting point decreases,the low melting point slag phase and Fe–Si alloy increase,and many active sites of metallic iron exist,which strengthen the gasification reaction and carburization ability of ICA-2(containing 30%iron ore).The promoting effect of ICA-2 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron is significantly improved.The gasification reaction capacity of ICA-3(containing 35%iron ore)is reduced,and the improvement in ICA-3 on the softening–melting performance of mixed burdens is reduced.The appropriate proportion of iron ore in ICA is about 30%.展开更多
The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present res...The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.展开更多
It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure p...It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.展开更多
The zero valent iron/granular active carbon(ZVI/GAC) micro-electrolysis enhanced by ultrasound(US) coupled with hydrogen peroxide(H_2O_2) was investigated for the deep degradation of nitrobenzene-containing wastewater...The zero valent iron/granular active carbon(ZVI/GAC) micro-electrolysis enhanced by ultrasound(US) coupled with hydrogen peroxide(H_2O_2) was investigated for the deep degradation of nitrobenzene-containing wastewater. The results of scanning electron microscopy-energy dispersive X-rays analysis(SEM-EDS) demonstrated that continuously accelerated regeneration of ZVI and GAC in situ by US could improve the process for converting nitrobenzene(NB) to aniline(AN). H_2O_2 was decomposed catalytically by the byproduct Fe^(2+) ions generated in the micro-electrolysis process to hydroxyl radicals and the organic pollutants in the wastewater were finally mineralized to CO2 and H2O. Effects of the ZVI dosage, the ZVI/GAC mass ratio, the initial pH value and the H_2O_2 dosage on the efficiency for degradation of NB were studied in these experiments. The optimal operating conditions covered a ZVI dosage of 15 g/L, a ZVI/GAC mass ratio of 1:2,an initial pH value of 3 and a H_2O_2 dosage of 4 mL. In this case, the NB removal efficiency reached 97.72% and the total organic carbon(TOC) removal efficiency reached 73.42% at a NB concentration of 300 mg/L. The reduction of NB by USZVI/GAC followed the pseudo-first-order kinetics model, and the pseudo-first-order rate constants were given at different initial pH values. The reaction intermediates such as AN, benzoquinonimine, p-benzoquinone, p-nitrophenol and other organic acids were detected and a probable pathway for NB degradation has been proposed.展开更多
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g...The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.展开更多
The effect of metallurgical fluxes CaO and CaCO3 on the reduction rate of iron ore pellets containing carbon in nitrogen atmosphere has been studied by a weight-loss thermal balance. The experimental results showed th...The effect of metallurgical fluxes CaO and CaCO3 on the reduction rate of iron ore pellets containing carbon in nitrogen atmosphere has been studied by a weight-loss thermal balance. The experimental results showed that adding CaO or CaCO3 can promote reduction reaction as the added CaO or CaCO3 probably decrease the apparent activation energy of iron ore concentrate-carbon-CaO or CaCO3 reaction, and the reduction rate constant changes with mass percent of CaO and CaCO3. The kinetic analysis also showed that the rate-controlling step of the reaction is inner gas diffusion.展开更多
The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additiv...The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.展开更多
A suitable and efficient flotation collector at normal atmospheric temperature for Donganshan iron ore was developed.A new chelate collector W-2 was synthesized.At 30 °C,condition flotation tests on mixed magneti...A suitable and efficient flotation collector at normal atmospheric temperature for Donganshan iron ore was developed.A new chelate collector W-2 was synthesized.At 30 °C,condition flotation tests on mixed magnetic concentrate of Donganshan sintering plant established the best reagent system.With the optimum reagent system,one direct flotation and one reverse flotation including one roughing,one cleaning and two scavenging stages have been conducted.After closed-circuit flotation,excellent indices were obtained with grade of siderite concentrate of 36.49%,recovery rate of 10.65%,and loss on ignition of 11.17%,and the grade of hematite concentrate reached 66.27%,with recovery rate of 78.25%,tailing grade of 16.22%,and recovery rate of 11.10%.To analyze the mechanism of action from W-2 to quartz and siderite,zeta potential and FTIR spectra were detected.Results showed that after reaction with W-2,the zeta potential of quartz and siderite evidently changed,which resulted from hydrogen bond between quartz and W-2,and a certain chemical action between siderite and W-2.In addition,the electronegativity equalization principle was used to calculate electronegativity of active adsorption sites and analysis on reagent molecular structure showed that W-2 molecule had five active adsorption sites.Results showed that the electronegativity of atoms N and O in W-2 presented a substantial increase,and the synergy of atomic sites allowed considerable enhancement of collecting ability.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal ...The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.展开更多
The contents and distributions of CaCO3, Fe2O3, FeO and free Fe2O3 in the Weinan loess section of Shaanxi Province of China were investigated through dense sampling. The re-sults show that the contents of CaCO3 and th...The contents and distributions of CaCO3, Fe2O3, FeO and free Fe2O3 in the Weinan loess section of Shaanxi Province of China were investigated through dense sampling. The re-sults show that the contents of CaCO3 and the ratio of Fe2O3/FeO may be chosen as proxy in-dices for the precipitation and temperature changes in the formation time of the strata, respec-tively. According to these geochemical indices, six stages of palcoclimate evolution are proposed in this region since 142 ka B. P., and secondary climate changes are discussed as well based on the curves of geochemical indices.展开更多
K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the dire...K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction.展开更多
The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc...The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.展开更多
The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of ...The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of about 450℃ for 3 h. The resulting products were treated at 2 000 ℃ for 2 h. All samples were examined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the iron particles in the heat-treated material are completely coated by carbon. In addition to the fully filled carbon microparticles as well as hollow carbon ones, also form carbon fibers with hollow centers. The formation mechanism of the as-prepared products was discussed briefly.展开更多
Novel iron carbide and potassium-promoted iron carbide catalysts were prepared and investigated for CO hydrogenation. The iron carbide showed high activity for CO hydrogenation under high pressures; with the addition ...Novel iron carbide and potassium-promoted iron carbide catalysts were prepared and investigated for CO hydrogenation. The iron carbide showed high activity for CO hydrogenation under high pressures; with the addition of potassium, activity and selectivity to C5+ hydrocarbons were greatly enhanced, and the selectivity to methane was suppressed under high pressure.展开更多
The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated b...The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.展开更多
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal....The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.展开更多
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca...The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure.展开更多
Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical propertie...Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical properties of the metal nanoparticles. In this paper, we report a new approach for the synthesis of iron doped ordered mesoporous carbon materials with adjustable pore size using Fe-SBA-15 as hard template and boric acid as the pore expanding reagent. The pore size can be precisely adjusted by a step of 0.4 nm in the range of 3-6 nm. The carbonization temperature can be lowered to 773 K due to the catalytic role of the doped iron. The present approach is suitable for facile synthesis of metal imbedded porous carbon materials with tunable pore sizes.展开更多
The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained...The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.展开更多
基金This work was financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds(U1808212)National Natural Science Foundation of China(52074080)Xingliao Talent Plan(XLYC1902118).
文摘Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,the evolution behavior and mechanism of different reactive ICA under simulated BF smelting conditions were studied.The results show that the existence of more sillimanite and aluminosilicate and less active sites of metallic iron will weaken gasification reaction and carburization ability of ICA-1(containing 10%iron ore).It weakens the promoting effect of ICA-1 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron.The aluminosilicate with a high melting point decreases,the low melting point slag phase and Fe–Si alloy increase,and many active sites of metallic iron exist,which strengthen the gasification reaction and carburization ability of ICA-2(containing 30%iron ore).The promoting effect of ICA-2 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron is significantly improved.The gasification reaction capacity of ICA-3(containing 35%iron ore)is reduced,and the improvement in ICA-3 on the softening–melting performance of mixed burdens is reduced.The appropriate proportion of iron ore in ICA is about 30%.
文摘The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.
基金Supported by the National Natural Science Foundation of China(21677018)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)
文摘It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.
基金supported by the Natural Science Foundation of China (U1610106)the Excellent Youth Science and Technology Foundation of Province Shanxi of China (2014021007)+1 种基金the Specialized Research Fund for Sanjin Scholars Pragram of Shanxi Prouince (201707)the North University of China Fund for Distinguished Young Scholars (201701)
文摘The zero valent iron/granular active carbon(ZVI/GAC) micro-electrolysis enhanced by ultrasound(US) coupled with hydrogen peroxide(H_2O_2) was investigated for the deep degradation of nitrobenzene-containing wastewater. The results of scanning electron microscopy-energy dispersive X-rays analysis(SEM-EDS) demonstrated that continuously accelerated regeneration of ZVI and GAC in situ by US could improve the process for converting nitrobenzene(NB) to aniline(AN). H_2O_2 was decomposed catalytically by the byproduct Fe^(2+) ions generated in the micro-electrolysis process to hydroxyl radicals and the organic pollutants in the wastewater were finally mineralized to CO2 and H2O. Effects of the ZVI dosage, the ZVI/GAC mass ratio, the initial pH value and the H_2O_2 dosage on the efficiency for degradation of NB were studied in these experiments. The optimal operating conditions covered a ZVI dosage of 15 g/L, a ZVI/GAC mass ratio of 1:2,an initial pH value of 3 and a H_2O_2 dosage of 4 mL. In this case, the NB removal efficiency reached 97.72% and the total organic carbon(TOC) removal efficiency reached 73.42% at a NB concentration of 300 mg/L. The reduction of NB by USZVI/GAC followed the pseudo-first-order kinetics model, and the pseudo-first-order rate constants were given at different initial pH values. The reaction intermediates such as AN, benzoquinonimine, p-benzoquinone, p-nitrophenol and other organic acids were detected and a probable pathway for NB degradation has been proposed.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special of China
文摘The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.
文摘The effect of metallurgical fluxes CaO and CaCO3 on the reduction rate of iron ore pellets containing carbon in nitrogen atmosphere has been studied by a weight-loss thermal balance. The experimental results showed that adding CaO or CaCO3 can promote reduction reaction as the added CaO or CaCO3 probably decrease the apparent activation energy of iron ore concentrate-carbon-CaO or CaCO3 reaction, and the reduction rate constant changes with mass percent of CaO and CaCO3. The kinetic analysis also showed that the rate-controlling step of the reaction is inner gas diffusion.
基金the National Natural Science Foundation of China, Contract No. 59774022.]
文摘The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.
基金Project (2015XKMS095) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (51574236) supported by the National Nature Science Foundation of China
文摘A suitable and efficient flotation collector at normal atmospheric temperature for Donganshan iron ore was developed.A new chelate collector W-2 was synthesized.At 30 °C,condition flotation tests on mixed magnetic concentrate of Donganshan sintering plant established the best reagent system.With the optimum reagent system,one direct flotation and one reverse flotation including one roughing,one cleaning and two scavenging stages have been conducted.After closed-circuit flotation,excellent indices were obtained with grade of siderite concentrate of 36.49%,recovery rate of 10.65%,and loss on ignition of 11.17%,and the grade of hematite concentrate reached 66.27%,with recovery rate of 78.25%,tailing grade of 16.22%,and recovery rate of 11.10%.To analyze the mechanism of action from W-2 to quartz and siderite,zeta potential and FTIR spectra were detected.Results showed that after reaction with W-2,the zeta potential of quartz and siderite evidently changed,which resulted from hydrogen bond between quartz and W-2,and a certain chemical action between siderite and W-2.In addition,the electronegativity equalization principle was used to calculate electronegativity of active adsorption sites and analysis on reagent molecular structure showed that W-2 molecule had five active adsorption sites.Results showed that the electronegativity of atoms N and O in W-2 presented a substantial increase,and the synergy of atomic sites allowed considerable enhancement of collecting ability.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
基金financially supported by the Hebei Province Science and Technology Support Program(No.14211007D)
文摘The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.
文摘The contents and distributions of CaCO3, Fe2O3, FeO and free Fe2O3 in the Weinan loess section of Shaanxi Province of China were investigated through dense sampling. The re-sults show that the contents of CaCO3 and the ratio of Fe2O3/FeO may be chosen as proxy in-dices for the precipitation and temperature changes in the formation time of the strata, respec-tively. According to these geochemical indices, six stages of palcoclimate evolution are proposed in this region since 142 ka B. P., and secondary climate changes are discussed as well based on the curves of geochemical indices.
基金supported by the China Scholarship Council (CSC) for the research at Norwegian University of Science and Technologysupported by the Natural Science Foundation of China (21306046)+2 种基金the Open Project of State Key Laboratory of Chemical Engineering (SKL-Che-15C03)the Fundamental Research Funds for the Central Universities (WA1514013)the 111 Project of Ministry of Education of China (B08021)
文摘K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction.
文摘The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.
基金National Basic Research Program of China (2004CB217808)National Natural Science Foundation of China (20471041, 90306014)+1 种基金Natural Science Foundation of Shanxi Province (20051018)Shanxi Research Fund for Returned Scholars (200428)
文摘The deoiled asphalt as the carbon source and the ferrocene as the metal source and the catalyst precursor were chosen to synthesize iron-containing carbon microparticles through co-carbonization at the temperature of about 450℃ for 3 h. The resulting products were treated at 2 000 ℃ for 2 h. All samples were examined by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The results show that the iron particles in the heat-treated material are completely coated by carbon. In addition to the fully filled carbon microparticles as well as hollow carbon ones, also form carbon fibers with hollow centers. The formation mechanism of the as-prepared products was discussed briefly.
文摘Novel iron carbide and potassium-promoted iron carbide catalysts were prepared and investigated for CO hydrogenation. The iron carbide showed high activity for CO hydrogenation under high pressures; with the addition of potassium, activity and selectivity to C5+ hydrocarbons were greatly enhanced, and the selectivity to methane was suppressed under high pressure.
基金support by China Scholarship Council(No.201206370127)support from CSIRO,Australia
文摘The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.
基金Sponsored by Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0795)
文摘The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.
基金supported by a Post Doc grant of the German Academic Exchange Service(Deutscher Akademischer Austauschdienst,DAAD grant no.91552012)by the European Research Council(EU FP7 ERC advanced grant no.338846)
文摘The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure.
基金supported by the Natural Science Foundation of China (NSFC Grant No. 20803064)the Natural Science Foundation of Zhejiang Province(Y4090348)the Qianjiang Talent Project in Zhejiang Province (2010R10039)
文摘Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical properties of the metal nanoparticles. In this paper, we report a new approach for the synthesis of iron doped ordered mesoporous carbon materials with adjustable pore size using Fe-SBA-15 as hard template and boric acid as the pore expanding reagent. The pore size can be precisely adjusted by a step of 0.4 nm in the range of 3-6 nm. The carbonization temperature can be lowered to 773 K due to the catalytic role of the doped iron. The present approach is suitable for facile synthesis of metal imbedded porous carbon materials with tunable pore sizes.
文摘The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.