The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results sh...The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.展开更多
It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The le...It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.展开更多
Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellet...Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.展开更多
Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon compo...Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.展开更多
A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlo...A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.展开更多
A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced ti...A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate...The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.展开更多
The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neu...The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.展开更多
Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the ...Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.展开更多
The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examination...The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.展开更多
This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical l...This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.展开更多
The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrat...The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrate and concentration of Fe2 +added into the solution on the leaching rate of zinc were examined.The experiment results indicate that if the agitation rate is greater than 600 r/min,its influence on Zn leaching rate is not substantial.A suitable rise in temperature can facilitate the leaching reaction,and the temperature should be controlled at 140-150℃.The increase trend of Zn leaching rate becomes slow when pressure is greater than 1.2 MPa,so the pressure is controlled at 1.2-1.4 MPa.Under the conditions of this study,Zn leaching rate decreases with a rise in the initial sulfuric acid concentration;and Zn leaching rate increases with a rise of iron content in the concentrate and Fe 2+ concentration in the solution.Moreover,the experiment demonstrates that the leaching process follows the surface chemical reaction control kinetic law of“shrinking of unreacted core”.The activation energy for pressure leaching high iron sphalerite concentrate is calculated,and a mathematical model for this pressure leaching is obtained.The model is promising to guide the practical operation of pressure leaching high iron sphalerite concentrate.展开更多
The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantita...The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantitatively measured via optical image analysis with consideration of size calibration and weighted ratio of image numbers in the core,middle and periphery zones of cross-section of pellets.In order to guarantee the measurement accuracy,54 images were captured in total for each specimen,with a weighted ratio of 1:7:19 with respect to the core,middle and periphery section of the cross-section of pellets.Increasing reduction temperature and time is favorable to the growth of metallic iron particles.Based on the modification of particle size measurement,in terms of time(t)and temperature(T)a predicting model of metallic iron particle size(D),was established as:D=125−0.112t−0.2352T−5.355×10^−4t^2+2.032×10^−4t∙T+1.134×10^−4T^2.展开更多
Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based o...Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.展开更多
In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,cryst...In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.展开更多
The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhanci...The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.展开更多
The article uses the method of regression statistics to obtain the regression formula of iron fluid nodule ratio Q and compacted graphite ratio R, through rare earth magnesium treatment. At the same time it has given ...The article uses the method of regression statistics to obtain the regression formula of iron fluid nodule ratio Q and compacted graphite ratio R, through rare earth magnesium treatment. At the same time it has given thejudging figure of Q and R, considering oxygen activity and temperature. When using oxygen activity to judgenodule ratio and compacted graphite ratio of the ironfluid treated by rare earth magnesium alloy, its limit value changes with the change of temperature.展开更多
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th...Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.展开更多
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金financially supported by the National Basic Research Program of China (No. 2012CB720401)the National Natural Science Foundation of China (U1260202)
文摘The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.
基金Project(51404307)supported by the National Natural Science Foundation of ChinaProject(2014CB643400)supported by the National Basic Research Program of China
文摘It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.
基金The Key Project of the 9th Five year Plan of Ministry of Science andTechnology!(No .960 40 2 0 2A)the Foundation for Unive
文摘Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.
基金support by the National Natural Science Foundation of China(No.51274033)
文摘Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.
基金supported by the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ240121)Liaoning science and technology project(No.2017220010)Changchun Science and Technology Bureau Local Company and College(University,Institution)Cooperation Projects(No.17DY023)
文摘A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.
基金the National Natural Science Foundation of China(No.51904063)the Fundamental Research Funds for the Central Universities,China(Nos.N172503016,N172502005,and N172506011)the China Postdoctoral Science Foundation(No.2018M640259).
文摘A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
文摘The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24.
基金Project(2006DFB72570) supported by the Grand Project of International Cooperation of Ministry of Science and Technology of China
文摘The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.
基金the results of a project approved and funded by the Ministry of Education,Science and Technology Development of the Republic of Serbia(Project Nos.TR 34004 and TR 34024)the EU FP6 BioMinE project by Bioclear,the Netherlands(European project contract NMP2-CT-2005-500329-1)
文摘Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.
文摘The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.
基金Supported by the National Basic Research Program (2010CB630902, 2004CB619202) the National Natural Science Foundation of China (31070034, 30800011, 31260396)+1 种基金 the Knowledge Innovation Program of CAS (2AKSCX2-YW-JS401) the Reward Fund for Young Scientists of Shandong Province (2007BS08002) of China
文摘This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.
基金Project(2002GG01)supported by Yunnan Metallurgical General Company,China
文摘The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrate and concentration of Fe2 +added into the solution on the leaching rate of zinc were examined.The experiment results indicate that if the agitation rate is greater than 600 r/min,its influence on Zn leaching rate is not substantial.A suitable rise in temperature can facilitate the leaching reaction,and the temperature should be controlled at 140-150℃.The increase trend of Zn leaching rate becomes slow when pressure is greater than 1.2 MPa,so the pressure is controlled at 1.2-1.4 MPa.Under the conditions of this study,Zn leaching rate decreases with a rise in the initial sulfuric acid concentration;and Zn leaching rate increases with a rise of iron content in the concentrate and Fe 2+ concentration in the solution.Moreover,the experiment demonstrates that the leaching process follows the surface chemical reaction control kinetic law of“shrinking of unreacted core”.The activation energy for pressure leaching high iron sphalerite concentrate is calculated,and a mathematical model for this pressure leaching is obtained.The model is promising to guide the practical operation of pressure leaching high iron sphalerite concentrate.
基金Project(51804346)supported by the National Natural Science Foundation of ChinaProject(2019JJ50767)supported by the Natural Science Foundation of Hunan Province,ChinaProject(KY[2017]125)supported by Youth Foundation of Guizhou Education Department,China。
文摘The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantitatively measured via optical image analysis with consideration of size calibration and weighted ratio of image numbers in the core,middle and periphery zones of cross-section of pellets.In order to guarantee the measurement accuracy,54 images were captured in total for each specimen,with a weighted ratio of 1:7:19 with respect to the core,middle and periphery section of the cross-section of pellets.Increasing reduction temperature and time is favorable to the growth of metallic iron particles.Based on the modification of particle size measurement,in terms of time(t)and temperature(T)a predicting model of metallic iron particle size(D),was established as:D=125−0.112t−0.2352T−5.355×10^−4t^2+2.032×10^−4t∙T+1.134×10^−4T^2.
基金the financial support of the National Natural Science Foundation of China (Grant Nos. 51274033 and 51374024)
文摘Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.
基金Project(FRF-TP-16-019A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274033)supported by the National Natural Science Foundation of China
文摘In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars
文摘The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.
文摘The article uses the method of regression statistics to obtain the regression formula of iron fluid nodule ratio Q and compacted graphite ratio R, through rare earth magnesium treatment. At the same time it has given thejudging figure of Q and R, considering oxygen activity and temperature. When using oxygen activity to judgenodule ratio and compacted graphite ratio of the ironfluid treated by rare earth magnesium alloy, its limit value changes with the change of temperature.
基金supported by the Science and Technology Special Plan Project from China Minmetals Group (No.2020ZXA01)the International Exchange and Growth Program for Young Teachers (No.QNXM20220061)the National Key Research and Development Program of China (No.2022YFC2906100).
文摘Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.