40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. ...40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent.展开更多
Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magn...Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or) nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins f'dfing fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in fight REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g. immiscibility. Early magmatic apatites contain 3031.48-12080 ×10^-6 REE. Later hydrothermal apatite contains 1958 ×10^-6 REE, indicating that the later hydrothermal ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu^2+ by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ^87Sr/^86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvolcaulc rocks, indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.展开更多
Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections ar...Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.展开更多
The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previ...The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previous studies have elaborated on the genesis of Fe deposits in the Altay orogenic belt and western Tianshan.However,the geological characteristics and mineralization history of iron deposits in the eastern Tianshan are still poorly understood.In this paper I describe the geological characteristics of iron deposits in the eastern Tianshan,and discuss their genetic types as well as metallogenic-tectonic settings,Iron deposits are preferentially distributed in central and southern parts of the eastern Tianshan.The known iron deposits in the eastern Tianshan show characteristics of magmatic Fe-Ti-V(e.g.,Weiya and Niumaoquan),sedimentary-metamorphic type(e.g.,Tianhu),and iron skarn(e.g.,Hongyuntan).In addition to the abovementioned iron deposits,many iron deposits in the eastern Tianshan are hosted in submarine volcanic rocks with well-developed skarn mineral assemblages.Their geological characteristics and magnetite compositions suggest that they may belong to distal skarns.SIMS zircon U-Pb analyses suggest that the Fe-Ti oxide ores from Niumaoquan and Weiya deposits were formed at 307.7±1.3 Ma and 242.7±1.9 Ma,respectively.Combined with available isotopic age data,the timing of Fe mineralization in the eastern Tianshan can be divided into four broad intervals:Early Ordovician-Early Silurian(476-438 Ma),Carboniferous(335-303 Ma),Early Permian(295-282 Ma),and Triassic(ca.243 Ma).Each of these episodes corresponds to a period of subduction,post-collision,and intraplate tectonics during the Paleozoic and Mesozoic time.展开更多
Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease(AD).The aim of this study was to investigate the correlation of brain iron accumulation with the severity...Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease(AD).The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements.Fifteen patients with AD,15 age-and sex-matched healthy controls,and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2'(R2'=R2*-R2).We statistically analyzed the R2' and iron concentrations of bilateral hippocampus(HP),parietal cortex(PC),frontal white matter(FWM),putamen(PU),caudate nucleus(CN),thalamus(TH),red nucleus(RN),substantia nigra(SN),and dentate nucleus(DN) of the cerebellum for the correlation with the severity of dementia.Two-tailed t-test,Student-Newman-Keuls test(ANOVA) and linear correlation test were used for statistical analysis.In 30 healthy volunteers,the R2' values of bilateral SN,RN,PU,CN,globus pallidus(GP),TH,and FWM were measured.The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration.The iron concentration of regions of interest(ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed.Regional R2' was positively correlated with regional brain iron concentration in normal adults(r=0.977,P0.01).Iron concentrations in bilateral HP,PC,PU,CN,and DN of patients with AD were significantly higher than those of the controls(P0.05);Moreover,the brain iron concentrations,especially in parietal cortex and hippocampus at the early stage of AD,were positively correlated with the severity of patients' cognitive impairment(P0.05).The higher the R2' and iron concentrations were,the more severe the cognitive impairment was.Regional R2' and iron concentration in parietal cortex and hippocampus were positively correlated with the severity of AD patients' cognitive impairment,indicating that it may be used as a biomarker to evaluate the progression of AD.展开更多
The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Caraj...The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.展开更多
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
The authors studied the biomarkers (alkanes) of eight iron ore samples from Nianpanshan and Dsbaodui of Pangjiabao and Longguan, Xuanhua, Hebei. These samples have higher nC15-nC20 contents, with main peaks at nC16, n...The authors studied the biomarkers (alkanes) of eight iron ore samples from Nianpanshan and Dsbaodui of Pangjiabao and Longguan, Xuanhua, Hebei. These samples have higher nC15-nC20 contents, with main peaks at nC16, nC 17 and nC18, and contain abundant pristane and phytane. These results indicate that iron stromatolite and iron oncolites in orebodies are sedimentary structures of algal origin. Sedimentary iron accumulation mainly results from activity of blue algae. This study provides new valuable evidence for the origin of Xuanlong-type iron deposits.展开更多
The Wutonggou iron deposit is located in the well-known iron metallogenic belt in the eastern Tianshan,NW China,and has been regarded as a sedimentary iron deposit.Although hydrothermal overprinting could play indispe...The Wutonggou iron deposit is located in the well-known iron metallogenic belt in the eastern Tianshan,NW China,and has been regarded as a sedimentary iron deposit.Although hydrothermal overprinting could play indispensable roles in the formation of high-grade iron ores in sedimentary iron deposits,previous studies mainly focused on sedimentary-related iron mineralization,while the nature and contribution of hydrothermal fluids are poorly constrained.Accordingly,an integrated study of ore geology,H-O-C isotopes and^(40)Ar-^(39)Ar dating,is conducted on the Wutonggou deposit,in order to reveal the features,source,and timing of hydrothermal mineralization.The studied deposit includes two mining sections namely the Jianshan and Wutonggou.Theδ^(18)O values of early magnetite from the Jianshan section range from+3.0‰to+5.8‰that nearly consistent with classic magmatic magnetite,while increase to 6.3‰-8.0‰in the late stage.Quartz from the two sections shows comparable H-O isotopic compositions and identical fractionation trends,and is plotted in or periphery to the primary magmatic water area.Calcites from the two sections are broadly similar in carbon and oxygen isotopic compositions,and siderite from the Wutonggou section is plotted in the same region.Thus,comparable stable isotopic compositions and evolution trends indicate similar magmatic fluids contributed hydrothermal iron mineralization in the two mining sections.Moreover,water-rock interactions of varying degrees generated distinct mineralization styles in the Jianshan and Wutonggou sections,and caused the isotopic fractionation in late stages.Biotite extracted from a hydrothermal siderite ore yielded a^(40)Ar-^(39)Ar plateau age of 299.5±2.0 Ma,indicates the timing of hydrothermal iron mineralization is corresponding to the emplacement of vicinity granitoids.Taken together,the hydrothermal mineralization in the Wutonggou iron deposit was the product of remobilization and upgrading of early sedimentary iron ores,and ore-forming fluids were most probably originated from regional granitic magmatism.展开更多
Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum bet...Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China.展开更多
Ningwu porphyrite-type iron deposits are located in Ningwu Mesozoic volcanic basin,which belongs to the middle and lower reaches of the Yangtze River metallogenic province.The volcanic rocks can be divided into Longwa...Ningwu porphyrite-type iron deposits are located in Ningwu Mesozoic volcanic basin,which belongs to the middle and lower reaches of the Yangtze River metallogenic province.The volcanic rocks can be divided into Longwangshan,Dawangshan,Gushan and Niangniangshan Formations from early to late.All these volcanic rocks are rich in alkali,and show the similar patterns in rare earth element(REE) distribution.However,some differences can be found in the trace elements and REE patterns.The study of petrology and REE geochemical characteristics shows that these rocks are derived from the underplating of the lithospheric mantle and are contaminated by crustal materials,undergo AFC process during the magmatic evolution.展开更多
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c...The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).展开更多
The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is...The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is 14°43′04″ N and 106°07′02″ E.展开更多
This paper discusses geological-geophysical-geochemical models of such typical deposits as the Tieshan-type Fe-Cu deposit, the Tonglushan-type Cu-Fe deposit, the Yehuaxiang-type Cu deposit, the Jiguanzui-type Cu-Au de...This paper discusses geological-geophysical-geochemical models of such typical deposits as the Tieshan-type Fe-Cu deposit, the Tonglushan-type Cu-Fe deposit, the Yehuaxiang-type Cu deposit, the Jiguanzui-type Cu-Au deposit, and the Tongshankou-type Cu (Mo) deposit. The models were established based on practical data of the polymetallic deposits dominated by copper ore in southeastern Hubei. These models, which are graphically illustrated in the paper, systematically summarize the metallogenic geological conditions and the geophysical-geochemical characteristics of copper deposits in this area. The models are of practical significance for studying copper deposits, predicting mineral resources, choosing exploration methods, and searching for ore deposits based on existing ones in the study area.展开更多
The precision of Aster data is higher than that of Landsat series of multispectral remote sensing data,which can more accurately reveal the distribution of altered minerals.It plays an important role in prospecting,bu...The precision of Aster data is higher than that of Landsat series of multispectral remote sensing data,which can more accurately reveal the distribution of altered minerals.It plays an important role in prospecting,but it is rarely used in areas with complex terrain and high vegetation coverage.Based on this purpose,this study used Aster remote sensing data,and took Gongchangling iron deposit as a case study.It combined the mineral spectrum theory and the basic geologic data of the study area,using the model of principal component analysis(PCA)and color synthesis to extract abnormal altered minerals.The results show that the distribution of identified anomalies is basically consistent with the existing geological data in this study area,which provides a reliable reference for the mineral resources ex-ploration and delineation of mining areas.展开更多
The Baishidong iron deposit is the only skarn-type iron deposit discovered in the study area.According to mineral assemblage and paragenesis,the mineralization can be divided into four metallogenic stages:early garnet...The Baishidong iron deposit is the only skarn-type iron deposit discovered in the study area.According to mineral assemblage and paragenesis,the mineralization can be divided into four metallogenic stages:early garnet-diopside skarn stage,late magnetite-tremolite-epidote skarn stage,early quartz-pyrite-chalcopyrite stage and late quartz-calcite-pyrite stage.Through LA-ICP-MS zircon U-Pb dating of diorite,which is closely related to mineralization,the results show that the weighted average age is 164.6±1.4 Ma,which limits the mineralization time of Baishidong iron deposit during or slightly later than Middle Jurassic.The diorite rocks are rich in sodium(Na_(2)O/K_(2)O=1.24-1.76),aluminium(Al_(2)O_(3)=17.41%-18.76%),LREE and large-ion lithophile elements(Ba,K and Sr),depleted in HREE and high-field-strength elements(Y,Nb,Ta,P and Ti),and show strongly fractionated patterns(LREE/HREE=6.58-9.93),no apparent Eu anomalies(δEu=0.91-1.13),which shows similar characteristics to island arc or active continental margin arc magma.The zirconεHf(t)values range from-22.6 to 5.9,and the age of the two-stage model(t_(DM2))is 836-2633 Ma.Above data combined with the geochemical characteristics,it is indicated that the magma was a mixture of multiple sources,composed of ancient materials and newly formed crust.During the process of evolution and ascending of magma,separation and crystallization occurred,and a large amount of continental crust material was mixed at the same time.Combined with regional tectonic evolution,the formation of this deposit may be related to the westward subduction of the Paleo-Pacific Plate to the Eurasian Plate.展开更多
The Shaytor apatite-rich iron deposit is located in the Kashmar-Kerman tectonic zone in the central of the Iranian plat, which is an important polymetallic belt in Iran. The ore bodies are interbedded with the upper i...The Shaytor apatite-rich iron deposit is located in the Kashmar-Kerman tectonic zone in the central of the Iranian plat, which is an important polymetallic belt in Iran. The ore bodies are interbedded with the upper inferacaamberian calc-alkaline igneous rocks that show well-preserved porphyritic and volcaniclastic textures. The iron ores have massive, disseminated, and brecciated structures. Magnetite from the Shaytor deposit is low in Ti (TiO<sub>2</sub> = up to 0.70 wt.%) and different ore types show similar rare earth element (REE) and trace element-normalized patterns with weak-to-moderate enrichment in light REE and negative Eu anomalies, indicating a common source and genesis. The similar REE patterns for the magnetite and volcanic basaltic host rocks suggest their close genetic linkage and support a magmatic origin for the deposit. The Shaytor deposit shows the typical characteristics of Kiruna-type deposits with regard to the mineral assemblages, ore texture and structure, and the apatite and magnetite geochemistry. We propose that the Kiruna-type Shaytor apatite-rich iron deposit was derived from Fe-P-rich melt through liquid immiscibility and the activity of hydrothermal fluids.展开更多
Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reducti...Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reduction to the pole,vertical derivative,upward continuation and residual anomaly,the authors analyzed the characteristics of three typical aeromagnetic anomalies in Zhangsanying--Tongshanzi aeromagnetic anomaly zone and their geological origin.The methods include the forward and inversion methods,such as 2.5D optimization fitting and Euler deconvolution.Moreover,combined with the geological outcrop,known iron deposits,ground magnetic survey and verification,the authors studied the relationship between the aeromagnetic anomalies and iron deposits.The result shows that the Zhangsanying--Tongshanzi aeromagnetic anomaly zone is composed of 10 large magnetic anomalies with high amplitude and clear boundary.The aeromagnetic anomalies are comparable and intrinsically related to the ground magnetic anomalies and IP anomalies,indicating that the anomalies are caused by magnetite deposits.It has good magnetite prospecting potential in the Zhangsanying--Tongshanzi aeromagnetic anomaly zone.展开更多
The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its poten...The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its potentially economic significance of associated metals of copper,cobalt,nickel,silver,lead and zinc,and of non-metals of dolomite,quartzite,barite,gypsum and sulfur.展开更多
基金the State Basic Research Program of China(Grant No.G1999043206)
文摘40Ar-39Ar dating of albite from the Meishan and Taocun iron deposits yields plateau ages of 122.90±0.16 Ma and 124.89±0.30 Ma, and isochron ages of 122.60±0.16 Ma and 124.90±0.29 Ma, respectively. Phlogopite from the Zhongshan-Gushan ore field has a plateau age of 126.7±0.17 Ma and an isochron age of 127.21±1.63 Ma. Analysis of regional geodynamic evolution of the middle-lower Yangtze River region suggests that the porphyry iron deposits were formed as a result of large-scale lithosphere delamination and strong sinistral strike-slip movement of the Tancheng Lujiang fault zone. The copper, molybdenum and gold deposit system in the middle-lower Yangtze River region was formed during the stress transition period of the eastern China continent.
基金This paper is financially aided by the National Natural Science Foundation of China (Grant No. 40472055).
文摘Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or) nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins f'dfing fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in fight REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g. immiscibility. Early magmatic apatites contain 3031.48-12080 ×10^-6 REE. Later hydrothermal apatite contains 1958 ×10^-6 REE, indicating that the later hydrothermal ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu^2+ by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ^87Sr/^86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvolcaulc rocks, indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.
基金financially supported by the Geological Survey Program of China(grants No.K1410 and DD20160346)the National Natural Foundation of China(grants No.41672078 and 41402067)
文摘Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.
基金This research was jointly supported by the National Key R&D Program of China(Nos.2018YFC0603801 and 2018YFC0604004)National Natural Science Foundation of China(Nos.41903042 and 41530206)+1 种基金China Postdoctoral Science Foundation(Nos.2016LH0003 and 2017M610984)open fund of the Key Lab of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(No.KLMM20170202).
文摘The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previous studies have elaborated on the genesis of Fe deposits in the Altay orogenic belt and western Tianshan.However,the geological characteristics and mineralization history of iron deposits in the eastern Tianshan are still poorly understood.In this paper I describe the geological characteristics of iron deposits in the eastern Tianshan,and discuss their genetic types as well as metallogenic-tectonic settings,Iron deposits are preferentially distributed in central and southern parts of the eastern Tianshan.The known iron deposits in the eastern Tianshan show characteristics of magmatic Fe-Ti-V(e.g.,Weiya and Niumaoquan),sedimentary-metamorphic type(e.g.,Tianhu),and iron skarn(e.g.,Hongyuntan).In addition to the abovementioned iron deposits,many iron deposits in the eastern Tianshan are hosted in submarine volcanic rocks with well-developed skarn mineral assemblages.Their geological characteristics and magnetite compositions suggest that they may belong to distal skarns.SIMS zircon U-Pb analyses suggest that the Fe-Ti oxide ores from Niumaoquan and Weiya deposits were formed at 307.7±1.3 Ma and 242.7±1.9 Ma,respectively.Combined with available isotopic age data,the timing of Fe mineralization in the eastern Tianshan can be divided into four broad intervals:Early Ordovician-Early Silurian(476-438 Ma),Carboniferous(335-303 Ma),Early Permian(295-282 Ma),and Triassic(ca.243 Ma).Each of these episodes corresponds to a period of subduction,post-collision,and intraplate tectonics during the Paleozoic and Mesozoic time.
基金supported by grants from the National Natural Science Foundation of China (No. 30870702 and No.30570531)863 Project of China (No. 2006AA02Z4A1)
文摘Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease(AD).The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements.Fifteen patients with AD,15 age-and sex-matched healthy controls,and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2'(R2'=R2*-R2).We statistically analyzed the R2' and iron concentrations of bilateral hippocampus(HP),parietal cortex(PC),frontal white matter(FWM),putamen(PU),caudate nucleus(CN),thalamus(TH),red nucleus(RN),substantia nigra(SN),and dentate nucleus(DN) of the cerebellum for the correlation with the severity of dementia.Two-tailed t-test,Student-Newman-Keuls test(ANOVA) and linear correlation test were used for statistical analysis.In 30 healthy volunteers,the R2' values of bilateral SN,RN,PU,CN,globus pallidus(GP),TH,and FWM were measured.The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration.The iron concentration of regions of interest(ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed.Regional R2' was positively correlated with regional brain iron concentration in normal adults(r=0.977,P0.01).Iron concentrations in bilateral HP,PC,PU,CN,and DN of patients with AD were significantly higher than those of the controls(P0.05);Moreover,the brain iron concentrations,especially in parietal cortex and hippocampus at the early stage of AD,were positively correlated with the severity of patients' cognitive impairment(P0.05).The higher the R2' and iron concentrations were,the more severe the cognitive impairment was.Regional R2' and iron concentration in parietal cortex and hippocampus were positively correlated with the severity of AD patients' cognitive impairment,indicating that it may be used as a biomarker to evaluate the progression of AD.
基金supported by the National Natural Science Foundation of China (grant No. 40773038the Program of High-level Geological Talents (201309)Youth Geological Talents (201112) of the China Geological Survey
文摘The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金This study was supported by China National Natural Science Foundation Grants DI 48970108 and SHENG 39070073
文摘The authors studied the biomarkers (alkanes) of eight iron ore samples from Nianpanshan and Dsbaodui of Pangjiabao and Longguan, Xuanhua, Hebei. These samples have higher nC15-nC20 contents, with main peaks at nC16, nC 17 and nC18, and contain abundant pristane and phytane. These results indicate that iron stromatolite and iron oncolites in orebodies are sedimentary structures of algal origin. Sedimentary iron accumulation mainly results from activity of blue algae. This study provides new valuable evidence for the origin of Xuanlong-type iron deposits.
基金supported by the National Key R&D Program of China Ministry of Science and Technology(No.2018YFC0604005)the China Geological Survey through Geological Survey Project Grant(No.1212011085527).
文摘The Wutonggou iron deposit is located in the well-known iron metallogenic belt in the eastern Tianshan,NW China,and has been regarded as a sedimentary iron deposit.Although hydrothermal overprinting could play indispensable roles in the formation of high-grade iron ores in sedimentary iron deposits,previous studies mainly focused on sedimentary-related iron mineralization,while the nature and contribution of hydrothermal fluids are poorly constrained.Accordingly,an integrated study of ore geology,H-O-C isotopes and^(40)Ar-^(39)Ar dating,is conducted on the Wutonggou deposit,in order to reveal the features,source,and timing of hydrothermal mineralization.The studied deposit includes two mining sections namely the Jianshan and Wutonggou.Theδ^(18)O values of early magnetite from the Jianshan section range from+3.0‰to+5.8‰that nearly consistent with classic magmatic magnetite,while increase to 6.3‰-8.0‰in the late stage.Quartz from the two sections shows comparable H-O isotopic compositions and identical fractionation trends,and is plotted in or periphery to the primary magmatic water area.Calcites from the two sections are broadly similar in carbon and oxygen isotopic compositions,and siderite from the Wutonggou section is plotted in the same region.Thus,comparable stable isotopic compositions and evolution trends indicate similar magmatic fluids contributed hydrothermal iron mineralization in the two mining sections.Moreover,water-rock interactions of varying degrees generated distinct mineralization styles in the Jianshan and Wutonggou sections,and caused the isotopic fractionation in late stages.Biotite extracted from a hydrothermal siderite ore yielded a^(40)Ar-^(39)Ar plateau age of 299.5±2.0 Ma,indicates the timing of hydrothermal iron mineralization is corresponding to the emplacement of vicinity granitoids.Taken together,the hydrothermal mineralization in the Wutonggou iron deposit was the product of remobilization and upgrading of early sedimentary iron ores,and ore-forming fluids were most probably originated from regional granitic magmatism.
基金supported by PMO of Guizhou Institute of Technology for the Study of Iron Deposit Oreforming Rule,Ore-controlling Factors and Ore-forming Predication in the Western Region of Guizhou Province(No.406,2015)PMO of Innovation Team of Guizhou General Institutes of Higher Education for Survey of Underlying Ore Deposit(No.56,2015)+1 种基金the Education Reform of the Guizhou Institute of Technology(No.2015JGY18)the Study for Existing State of Rare Earth Elements in Low Grade Iron Ore from Associated Multi-metal Deposits in Northwest Guizhou(Ref.No.05,2014)
文摘Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China.
基金Project(2011BAB04D01) supported by the National Science and Technology Support Program of China
文摘Ningwu porphyrite-type iron deposits are located in Ningwu Mesozoic volcanic basin,which belongs to the middle and lower reaches of the Yangtze River metallogenic province.The volcanic rocks can be divided into Longwangshan,Dawangshan,Gushan and Niangniangshan Formations from early to late.All these volcanic rocks are rich in alkali,and show the similar patterns in rare earth element(REE) distribution.However,some differences can be found in the trace elements and REE patterns.The study of petrology and REE geochemical characteristics shows that these rocks are derived from the underplating of the lithospheric mantle and are contaminated by crustal materials,undergo AFC process during the magmatic evolution.
基金the China State Mineral Resources Investigation Program (Grant No.1212011220936)National Science Foundation of China (Grant No.U1403292 41472196)
文摘The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).
基金financially supported by the Special fund for Foreign Mineral Resources Risk Exploration (Grant No.Sichuan Financial Investment (2010)331)China Geological Survey (Grant No.12120114012501)
文摘The Phlaythong large iron deposit in Shampasak of southern Laos,is located in the Kon Tum microblock (Fig.1A),central-southern part of the Indo-China block,and the geographic coordinate of the central mining area is 14°43′04″ N and 106°07′02″ E.
文摘This paper discusses geological-geophysical-geochemical models of such typical deposits as the Tieshan-type Fe-Cu deposit, the Tonglushan-type Cu-Fe deposit, the Yehuaxiang-type Cu deposit, the Jiguanzui-type Cu-Au deposit, and the Tongshankou-type Cu (Mo) deposit. The models were established based on practical data of the polymetallic deposits dominated by copper ore in southeastern Hubei. These models, which are graphically illustrated in the paper, systematically summarize the metallogenic geological conditions and the geophysical-geochemical characteristics of copper deposits in this area. The models are of practical significance for studying copper deposits, predicting mineral resources, choosing exploration methods, and searching for ore deposits based on existing ones in the study area.
基金Supported by projects of Institute of Geology,Chinese Academy of Geological Sciences(No.DD20160121)the National Key Research and Development Program of China(No.2020YFA0714103).
文摘The precision of Aster data is higher than that of Landsat series of multispectral remote sensing data,which can more accurately reveal the distribution of altered minerals.It plays an important role in prospecting,but it is rarely used in areas with complex terrain and high vegetation coverage.Based on this purpose,this study used Aster remote sensing data,and took Gongchangling iron deposit as a case study.It combined the mineral spectrum theory and the basic geologic data of the study area,using the model of principal component analysis(PCA)and color synthesis to extract abnormal altered minerals.The results show that the distribution of identified anomalies is basically consistent with the existing geological data in this study area,which provides a reliable reference for the mineral resources ex-ploration and delineation of mining areas.
基金National Key R&D Propram of China(Nos.2018YFC0623804 and 2017YFC0601304).
文摘The Baishidong iron deposit is the only skarn-type iron deposit discovered in the study area.According to mineral assemblage and paragenesis,the mineralization can be divided into four metallogenic stages:early garnet-diopside skarn stage,late magnetite-tremolite-epidote skarn stage,early quartz-pyrite-chalcopyrite stage and late quartz-calcite-pyrite stage.Through LA-ICP-MS zircon U-Pb dating of diorite,which is closely related to mineralization,the results show that the weighted average age is 164.6±1.4 Ma,which limits the mineralization time of Baishidong iron deposit during or slightly later than Middle Jurassic.The diorite rocks are rich in sodium(Na_(2)O/K_(2)O=1.24-1.76),aluminium(Al_(2)O_(3)=17.41%-18.76%),LREE and large-ion lithophile elements(Ba,K and Sr),depleted in HREE and high-field-strength elements(Y,Nb,Ta,P and Ti),and show strongly fractionated patterns(LREE/HREE=6.58-9.93),no apparent Eu anomalies(δEu=0.91-1.13),which shows similar characteristics to island arc or active continental margin arc magma.The zirconεHf(t)values range from-22.6 to 5.9,and the age of the two-stage model(t_(DM2))is 836-2633 Ma.Above data combined with the geochemical characteristics,it is indicated that the magma was a mixture of multiple sources,composed of ancient materials and newly formed crust.During the process of evolution and ascending of magma,separation and crystallization occurred,and a large amount of continental crust material was mixed at the same time.Combined with regional tectonic evolution,the formation of this deposit may be related to the westward subduction of the Paleo-Pacific Plate to the Eurasian Plate.
文摘The Shaytor apatite-rich iron deposit is located in the Kashmar-Kerman tectonic zone in the central of the Iranian plat, which is an important polymetallic belt in Iran. The ore bodies are interbedded with the upper inferacaamberian calc-alkaline igneous rocks that show well-preserved porphyritic and volcaniclastic textures. The iron ores have massive, disseminated, and brecciated structures. Magnetite from the Shaytor deposit is low in Ti (TiO<sub>2</sub> = up to 0.70 wt.%) and different ore types show similar rare earth element (REE) and trace element-normalized patterns with weak-to-moderate enrichment in light REE and negative Eu anomalies, indicating a common source and genesis. The similar REE patterns for the magnetite and volcanic basaltic host rocks suggest their close genetic linkage and support a magmatic origin for the deposit. The Shaytor deposit shows the typical characteristics of Kiruna-type deposits with regard to the mineral assemblages, ore texture and structure, and the apatite and magnetite geochemistry. We propose that the Kiruna-type Shaytor apatite-rich iron deposit was derived from Fe-P-rich melt through liquid immiscibility and the activity of hydrothermal fluids.
基金Supported by Project of China Geological Survey(No.DD20190028)。
文摘Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reduction to the pole,vertical derivative,upward continuation and residual anomaly,the authors analyzed the characteristics of three typical aeromagnetic anomalies in Zhangsanying--Tongshanzi aeromagnetic anomaly zone and their geological origin.The methods include the forward and inversion methods,such as 2.5D optimization fitting and Euler deconvolution.Moreover,combined with the geological outcrop,known iron deposits,ground magnetic survey and verification,the authors studied the relationship between the aeromagnetic anomalies and iron deposits.The result shows that the Zhangsanying--Tongshanzi aeromagnetic anomaly zone is composed of 10 large magnetic anomalies with high amplitude and clear boundary.The aeromagnetic anomalies are comparable and intrinsically related to the ground magnetic anomalies and IP anomalies,indicating that the anomalies are caused by magnetite deposits.It has good magnetite prospecting potential in the Zhangsanying--Tongshanzi aeromagnetic anomaly zone.
文摘The Shilu iron ore deposit,located in the western Hainan Province,South China,is one of the most important iron-ore mining districts in China not only for its huge reserves of hematite-rich ores,but also for its potentially economic significance of associated metals of copper,cobalt,nickel,silver,lead and zinc,and of non-metals of dolomite,quartzite,barite,gypsum and sulfur.