The study is aimed at the problem of high content of Cr^(6+),Cr^(3+)and SO_(4)^(2-)is high and low pH value in acid mine drainage(AMD).Moreover,treatment of AMD by sulfate reducing bacteria(SRB)requires the addition o...The study is aimed at the problem of high content of Cr^(6+),Cr^(3+)and SO_(4)^(2-)is high and low pH value in acid mine drainage(AMD).Moreover,treatment of AMD by sulfate reducing bacteria(SRB)requires the addition of carbon source,while the treating effectiveness is not good enough on its own.The sugarcane slag,the corn cob and the sunflower straw were selected as the SRB carbon source cooperating with iron scrap to construct the dynamic columns 1,2 and 3.The mechanism of removing Cr^(6+),Cr^(3+),SO_(4)^(2-)and H+and the regularity of sustained release of carbon source and TFe release was studied in AMD.The removal efficiency of heavy metal ions,the ability of sustained release of carbon source,and the ability of adjusting acid by the three dynamic columns were compared.The result shows that the average removal rates of Cr^(6+),Cr^(3+)and SO_(4)^(2-)in effluent of dynamic column 1,filled by sugarcane slag,iron scrap and SRB,were 96.9%,67.1%and 54.3%.The average release of TFe and chemical oxygen demand(COD)were 4.4 and 287.3 mg/L.Its average pH was 6.98.Compared with the performance of dynamic columns 1,2 and 3,dynamic column 1 performed best in removing Cr^(6+),Cr^(3+)and SO_(4)^(2-)from AMD and controlling the release of COD and TFe,adjusting the pH of the solution.The study is of significance in treatment of AMD by taking for biomass materials as SRB carbon source in cooperation with iron scrap.展开更多
Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certai...Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.展开更多
The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal...The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.展开更多
基金This work was supported by the National Natural Science Foundation of China(41672247,41102157)Liaoning Province’s“Program for Promoting Liaoning Talents”(XLYC1807159)+1 种基金2019 Nature Fund Project Guidance Plan of Liaoning Province(2019-zd-0044)2017 Youth Project of Education Department of Liaoning Province(LJ2017QL035).
文摘The study is aimed at the problem of high content of Cr^(6+),Cr^(3+)and SO_(4)^(2-)is high and low pH value in acid mine drainage(AMD).Moreover,treatment of AMD by sulfate reducing bacteria(SRB)requires the addition of carbon source,while the treating effectiveness is not good enough on its own.The sugarcane slag,the corn cob and the sunflower straw were selected as the SRB carbon source cooperating with iron scrap to construct the dynamic columns 1,2 and 3.The mechanism of removing Cr^(6+),Cr^(3+),SO_(4)^(2-)and H+and the regularity of sustained release of carbon source and TFe release was studied in AMD.The removal efficiency of heavy metal ions,the ability of sustained release of carbon source,and the ability of adjusting acid by the three dynamic columns were compared.The result shows that the average removal rates of Cr^(6+),Cr^(3+)and SO_(4)^(2-)in effluent of dynamic column 1,filled by sugarcane slag,iron scrap and SRB,were 96.9%,67.1%and 54.3%.The average release of TFe and chemical oxygen demand(COD)were 4.4 and 287.3 mg/L.Its average pH was 6.98.Compared with the performance of dynamic columns 1,2 and 3,dynamic column 1 performed best in removing Cr^(6+),Cr^(3+)and SO_(4)^(2-)from AMD and controlling the release of COD and TFe,adjusting the pH of the solution.The study is of significance in treatment of AMD by taking for biomass materials as SRB carbon source in cooperation with iron scrap.
基金Project (No. 20407015) supported by the National Natural Sci-ence Foundation of China
文摘Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial con- centration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.
基金Project(05KJD6010110) supported by the Natural Science Foundation of the Education Commission of Jiangsu Province,ChinaProject(2005005) supported by the Science and Technology Foundation of the Environmental Protection Bureau of Jiangsu Province,China
文摘The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.