期刊文献+
共找到2,229篇文章
< 1 2 112 >
每页显示 20 50 100
Kinetics of iron removal from metallurgical grade silicon with pressure leaching 被引量:9
1
作者 YU Zhanliang XIE Keqiang +3 位作者 MA Wenhui ZHOU Yang XIE Gang DAI Yongnian 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期688-694,共7页
In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of... In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of hydrochloric acid on the kinetics and mechanism of iron removal were studied. It was found that the reaction kinetic model followed the shrinking core model, and the apparent activation energy of the leaching reaction was 46.908 kJ/mol. And the apparent reaction order of iron removal with pressure leaching was 0.899. The kinetic equation was obtained and the mathematical model of iron removal from metallurgical grade silicon (MG-Si) was given as follows:The values calculated from the equation were consistent with the experimental results. 展开更多
关键词 metallurgical physics and chemistry KINETICS pressure leaching metallurgical grade silicon iron removal
下载PDF
Removal of iron from ilmenite by KOH leaching-oxalate leaching method 被引量:5
2
作者 WANG Yuanbo QI Tao +1 位作者 CHU Jinglong ZHAO Wei 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期9-15,共7页
Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Me... Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile. 展开更多
关键词 ILMENITE iron removal titanium oxide OXALATE potassium hydroxide KOH leaching
下载PDF
Influence of acid leaching and calcination on iron removal of coal kaolin 被引量:3
3
作者 Pei-wang Zhu Wei-qiang Zeng +3 位作者 Xiu-lin Xu Le-ming Cheng Xiao Jiang Zheng-lun Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期317-325,共9页
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffracti... Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900&#176;C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900&#176;C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination. 展开更多
关键词 KAOLIN iron removal CALCINATION acid leaching EXTRACTION MSssbauer spectroscopy
下载PDF
Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation 被引量:11
4
作者 Seong Woo Kim Un Ho Im +3 位作者 Hyeong Cheol Cha Se Hyeong Kim Ji Eun Jang Ki Young Kim 《China Foundry》 SCIE CAS 2013年第2期112-117,共6页
Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of t... Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of AI-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in AI-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two AI-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for AI-12Si-1.7Fe alloy. And they are 82% and 18% for AI-12Si-3.4Fe alloy, respectively. 展开更多
关键词 Al-Si alloys iron removal centrifugal separation
下载PDF
A mathematical model for electrochemical chloride removal from marine cast iron artifacts 被引量:3
5
作者 Weizhen OUYANG Xia CAO Ning WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第2期91-99,共9页
The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the op... The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfactorily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal. 展开更多
关键词 Marine cast iron Electrochemical chloride removal Mathematical model
下载PDF
Benzohydroxamic acid to improve iron removal from potash feldspar ores 被引量:6
6
作者 CAO Zhan-fang QIU Pei +1 位作者 WANG Shuai ZHONG Hong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2190-2198,共9页
The technological mineralogy of the potash feldspar was investigated and a new collector named Yb105 was adopted to remove iron from potash feldspar ores.The technological mineralogy results indicate that the main com... The technological mineralogy of the potash feldspar was investigated and a new collector named Yb105 was adopted to remove iron from potash feldspar ores.The technological mineralogy results indicate that the main components of the ore were feldspar,sericite,quartz and kaolinite,and iron mainly existed in limonite and hematite,most of which can be removed by beneficiation.The results show the benzohydroxamic acid can not only increase the recovery of iron and reduce the consumption of oleic acid collector,but also enhance the collecting performance of oleic acid at low temperature,which can realize the flotation of the ores at a low temperature and play an important role in saving energy to some extent.Compared with oleic oil,the benzohydroxamic acid had a great advantage in removing iron from potash feldspar,a potash feldspar concentrate with Fe grade of 0.23%,K2O grade of 12.59%and Na2O grade of 0.26%was obtained by flotation with Yb105 as collector,and the yield of the concentrate was 82.55%. 展开更多
关键词 potash feldspar iron removal reverse flotation benzohydroxamic acid
下载PDF
Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore 被引量:5
7
作者 WU Shi-chao LI Zheng-yao +2 位作者 SUN Ti-chang LI Xiao-hui XU Cheng-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期443-454,共12页
The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C... The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%. 展开更多
关键词 high-phosphorus iron ore direct reduction calcium compounds phosphorus removal calcium phosphate tribasic
下载PDF
Simultaneous removal of Cr(Ⅵ), Cd, and Pb from aqueous solution by iron sulfide nanoparticles: Influencing factors and interactions of metals 被引量:4
8
作者 Qingrong Zou Wanyu Wang +1 位作者 Tong Zhang Yuanyuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期245-255,共11页
Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) ... Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) were stabilized with carboxymethyl cellulose(CMC) and utilized to remove Cr(Ⅵ),Cd,and Pb from an aqueous solution.Batch experiments,a Visual MINTEQ model,scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectrometer(XPS) analysis were used to determine the removal efficiencies,influencing factors,and mechanisms.The FeS NP suspension simultaneously removed Cr(Ⅵ),Cd,and Pb from an aqueous solution.The concentrations of Cr(Ⅵ),Cd,and Pb decreased from 50,10,and 50 mg·L^(-1) to 2.5,0.1,and 0.1 mg·L^(-1),respectively.The removal capacities were up to 418,96,and 585 mg per gram of stabilized FeS NPs,respectively.The acidic conditions significantly favored the removal of aqueous Cr(Ⅵ) while the alkaline conditions favored the removal of Cd and Pb.Oxygen slightly inhibited the removal of Cr(Ⅵ),but it had no significant influence on the removal of Cd and Pb.A potential mechanism was proposed for the simultaneous removal of Cr(Ⅵ),Cd,and Pb using FeS NPs.The interactions of the three heavy metals involved a cationic bridging effect on Cr(Ⅵ) by Cd,an enhanced adsorption effect on Cd by [Cr,Fe](OH)_3,precipitation of PbCrO_4,and transformation of PbCrO_4 to PbS.Therefore,FeS NPs have a high potential for use in the simultaneous removal of Cr(Ⅵ),Cd,and Pb from contaminated aqueous solutions. 展开更多
关键词 iron sulfide NANOPARTICLES Multi-heavy metal contamination Simultaneous removal Environment REMEDIATION
下载PDF
Transformation behavior of ferrous sulfate during hematite precipitation for iron removal 被引量:6
9
作者 Zhi-gan DENG Fan YANG +5 位作者 Chang WEI Bei-ping ZHU Peng ZENG Xing-bin LI Cun-xiong LI Min-ting LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期492-500,共9页
The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization o... The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite. 展开更多
关键词 hydrometallurgical zinc crystallization of ferrous sulfate hematite precipitation for iron removal
下载PDF
Removal of Cr(Ⅲ) and Cr(Ⅵ) from aqueous solution by adsorption on sugarcane pulp residue 被引量:2
10
作者 杨志辉 王兵 +3 位作者 柴立元 王云燕 王海鹰 苏长青 《Journal of Central South University》 SCIE EI CAS 2009年第1期101-107,共7页
Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of... Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of Cr(Ⅲ) and Cr(V[) adsorption and their removal by SPR were investigated. The results show that the removal percentages of Cr(Ⅵ) and Cr(Ⅲ) increase with increasing SPR dosage and temperature and decrease with increasing SPR particle size and the initial concentration of chromium ions. However, the influence of pH value on the Cr(Ⅵ) removal differs from that of the Cr(Ⅲ) removal. The Cr(Ⅵ) removal percentage decreases with increasing pH values, while the Cr(Ⅲ) removal percentage increases with increasing pH value. The adsorption kinetics of Cr(Ⅵ) and Cr(Ⅲ) well fits with pseudo-second-order model. Langmuir adsorption isotherm can well describe the adsorption phenomena of chromium ions with the maximum adsorption capacity of 0.567 mg/g for Cr(Ⅵ) and 3.446 mg/g for Cr(Ⅲ). Moreover, SPR reveals higher adsorption capacity for Cr(Ⅲ) than that for Cr(Ⅵ), which implies that SPR has more potential application for Cr(Ⅲ)-containing wastewater treatment than that for Cr(Ⅵ)-containing wastewater treatment. 展开更多
关键词 Cr(Ⅵ) Cr( removal ADSORPTION sugarcane pulp residue
下载PDF
Science Letters:Simultaneous removal of nitrate and heavy metals by iron metal 被引量:1
11
作者 郝志伟 徐新华 +3 位作者 金剑 何平 刘永 汪大翚 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第5期307-310,共4页
Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing comm... Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed. 展开更多
关键词 Simultaneously removing iron metal NITRATE Heavy metal
下载PDF
Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater 被引量:4
12
作者 周健 段送华 +1 位作者 陈垚 胡斌 《Journal of Central South University》 SCIE EI CAS 2009年第S1期368-373,共6页
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g... The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively. 展开更多
关键词 iron-CARBON MICRO-ELECTROLYSIS NITROGEN NITRATE NITROGEN removal efficiency removal rate
下载PDF
Cr(Ⅲ) removal from simulated solution using hydrous magnesium oxide coated fly ash: Optimization by response surface methodology (RSM) 被引量:1
13
作者 Min Xia Chunsong Ye +2 位作者 Kewu Pi Defu Liu Andrea R. Gerson 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期1192-1199,共8页
Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function... Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater. 展开更多
关键词 Hydrous magnesium oxide Fly ash Cr( removal OPTIMIZATION Response surface methodology (RSM)
下载PDF
Separation of Kaolinite from Ion-Adsorption Rare Earth Tailings in Southern China and Iron Removal Treatment 被引量:1
14
作者 Yongqing Wang Huayin Liang +2 位作者 Qibing Chang Xiaozhen Zhang Jian’er Zhou 《Journal of Minerals and Materials Characterization and Engineering》 2016年第1期40-47,共8页
Several hundred million tons of ion-adsorption rare earth tailings exist in Ganzhou, Southern China, which is a severe environmental hazard. To reduce and reutilize the tailing, kaolinite has been separated from the t... Several hundred million tons of ion-adsorption rare earth tailings exist in Ganzhou, Southern China, which is a severe environmental hazard. To reduce and reutilize the tailing, kaolinite has been separated from the tailings by mechanical separation in laboratory scale and pilot scale. The results show that the tailing is mainly composed of fine kaolinite and coarse quart. Quartz and kaolinite can be separated by sieves, shaker, spiral chute or hydrocyclone, which has the similar results in laboratory scale and pilot scale. 30.2% of the tailings can be re-sourced and applied in ceramic industries. 41.7% of kaolinite can be obtained after sorting and iron removal by magnetic separator in pilot scale, which can be applied in ceramic industries according to the Chinese national standard (TC-3). The results give a progressive solution to re-source the tailings economically. 展开更多
关键词 Rare Earth Tailing KAOLINITE SEPARATION Reutilize iron removal
下载PDF
Removal of Chromium(Ⅲ) from Monoammonium Phosphate Solutions by a Porous Adsorbent of Fluor(calcium silicate) Composites 被引量:1
15
作者 ZHU Xinhua JIA Xuhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期384-392,共9页
The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)c... The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)composites(FCSc)was prepared by hydrothermal method using diatomaceous earth,hydrated lime and additive(NaF)as raw materials,which was characterized and used for the removal of Cr^3+from monoammonium phosphate solutions.The effects of different parameters,such as solution pH,initial Cr^3+concentration,temperature and contact time on the adsorption of Cr^3+onto FCSc were investigated in details.The results indicated that the adsorption process was in agreement with the pseudo-second-order kinetic model and Freundlich isotherm.The spontaneous and endothermic nature of the adsorption process was obtained by analyzing various thermodynamic parameters(△G0,△H0,and△S0).In addition,computational monte carlo simulations between Cr3+ions and FCSc were conducted to elucidate the adsorption mechanism.Such kind of porous adsorbent provided a potential application in the removal of impurities from monoammonium phosphate industry. 展开更多
关键词 fluor(calcium silicate)composites monoammonium phosphate solutions chromium() removal monte carlo simulations
下载PDF
Quantitative Estimation of the Changes in Soil CEC after the Removal of Organic Matter and Iron Oxides 被引量:1
16
作者 Xiangzheng Kong Decheng Li +1 位作者 Xiaodong Song Ganlin Zhang 《Agricultural Sciences》 2021年第11期1244-1254,共11页
The removal of organic matter and iron oxides could increase and decrease soil CEC in tropical and subtropical regions, but the quantitative information is insufficient so far about the change of soil CEC, the influen... The removal of organic matter and iron oxides could increase and decrease soil CEC in tropical and subtropical regions, but the quantitative information is insufficient so far about the change of soil CEC, the influence factors and their contribution. In this study, the subhorizon soils of 24 soil series in the tropical and subtropical China were used, pH, particle size composition, organic matter, iron oxides of these samples were measured, and also CECs were measured and compared for the original soils and after the removal of organic matter and iron oxides. The results showed that, compared with CEC of the original soil, the eliminating organic matter increased soil CEC significantly by 2.28% - 56.50% with a mean of 24.02%, but the further obliterating iron oxides decreased soil CEC significantly by 0.75% - 20.30% with a mean of 7.73%. CEC after the removal of organic matter and iron oxides had positive correlation with iron oxides (p < 0.01) and negative correlation with sand content (p < 0.01 and p < 0.05). CEC after organic matter eliminated was mainly decided by iron oxides (51.68%), followed by silt content (22.19%);while CEC after iron oxides obliterated was mainly determined by iron oxides (50.55%). The increase of CEC after organic matter eliminated was co-affected by the contents of clays, slits, iron oxides and pH (22.00% - 27.34%), while the decrease of CEC after iron oxides obliterated further was dominated by the content of organic matter (66.92%). More other soil parameters should be considered for higher predicting accuracy in the regression model of soil CEC after the removal of organic matter and iron oxides, and the recommended optimal models obtained in this study were as follows: for soil CEC after organic matter eliminated, CEC = 1.665 <span style="white-space:nowrap;">&#8722;</span> 0.546pH <span style="white-space:nowrap;">&#8722;</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">&#8722;</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RSME was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>, p < 0.01), while for soil CEC after iron oxides further obliterated, CEC = 1.665 <span style="white-space:nowrap;">&#8722;</span> 0.546pH <span style="white-space:nowrap;">&#8722;</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">&#8722;</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RMSE was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8729;</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span>1</sup>, p < 0.01). Further research is needed in the future as for exploring internal functional mechanism in view of soil electrochemistry and mineralogy. 展开更多
关键词 Soil CEC Quantitative Estimation removal Organic Matter iron Oxides
下载PDF
Efficiency and Mechanism of Phosphorus Removal by Coagulation of Iron-manganese Composited Oxide 被引量:2
17
作者 YANG Yan-ling LI Xing +2 位作者 GUO Can-xiong ZHAO Fu-wang JIA Feng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第2期224-227,共4页
Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficienc... Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficiency and pollution removal mechanism of the FeMnO were approached. Results show that the main compositions of the FeMnO are δ-manganese dioxide and ferric hydroxide. The specific surface area is about 146.22 m^2/g. The FeMnO contains rich hydroxyl with extremely strong adsorption action and chemical adsorption activity. The zero charge point of the oxide in pure water is about 8.0 of pH value. Under neutral pH value conditions, the FeMnO particle surface carried positive charges. The FeMnO particles are quasi-spherical micro-particles with irregular sizes adjoined each other to form net construction. Phosphorus removal efficiency of the FeMnO is remarkable, the total dissoluble phosphorus of settled water can be reduced below detecting level(0.3 μtg/L) at a FeMnO dosage of 6 mg/L, and total phosphorus below detecting level at a FeMnO dosage of 10 mg/L, for water samples containing total phos- phorus of 1281.70 μg/L and total dissoluble phosphorus of 1187.91 μtg/L. The mechanism of effective coagulation for phosphorus removal is combined results of multiple actions of adsorption, charge neutralization, adsorption/bridging and so on. 展开更多
关键词 iron-manganese composited oxide Phosphorus removal COAGULATION MECHANISM Drinking water treatment
下载PDF
Study on the Removal of Iron,Manganese and Nitrate in Groundwater by Biological Ribbon Technology
18
作者 Yuchen Li,Yukun Ju School of Water Resources & Environment,China University of Geosciences(Beijing),Beijing 100083,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期190-191,共2页
The pollution of iron,manganese and nitrate in groundwater is a huge threat to human beings.In this study,column experiments of ceramic,manganese sand,ceramic sand,volcanic rock,quartz sand were conducted.Iron and man... The pollution of iron,manganese and nitrate in groundwater is a huge threat to human beings.In this study,column experiments of ceramic,manganese sand,ceramic sand,volcanic rock,quartz sand were conducted.Iron and manganese contents of influent were 3.3 mg/L and 2.1 mg/L.When the biofilm became mature,the highest iron and manganese removal rate achieved by manganese sand as a filter material.Quartz did a little worse than manganese sand,but other three filter material could not reach 展开更多
关键词 removal of iron MANGANESE and NITRATE GROUNDWATER BIOLOGICAL RIBBON technology
下载PDF
Characterization and Iron Removal Treatment of Ion-Adsorption Rare Earth Tailings in Southern China
19
作者 Yongqing Wang Xin Nie +3 位作者 Qibing Chang Huayin Liang Xiaozhen Zhang Jian-Er Zhou 《Journal of Minerals and Materials Characterization and Engineering》 2016年第2期127-134,共8页
The ion-adsorption rare earth tailings have become a serious environmental pollution in Southern China, yet the potential of their economical value has not been fully exploited. In this work, the chemical and mineral ... The ion-adsorption rare earth tailings have become a serious environmental pollution in Southern China, yet the potential of their economical value has not been fully exploited. In this work, the chemical and mineral compositions of the ion-adsorption rare earth tailings were characterized by Mineral Liberation Analyze (MLA) and XRF. The results show that 91.98 wt% of the tailings are composed of kaolinite and quartz, latter of which was removed by the sieving method. The other minor minerals contain feldspar, biotite, muscovite, titanomagnetite and limonite. Amongst these, the iron-bearing minerals are mostly found in the titanomagnetite and limonite which can be mostly removed by using a periodic high-gradient magnetic separator with a magnetic induction of 0.6 Tesla. The Fe<sub>2</sub>O<sub>3</sub> content of the tailings changed from 2.11 wt% to 1.06 wt% after the sorting process, which met the Chinese national standard of TC-3 grade raw materials for ceramic industry applications. The Fe<sub>2</sub>O<sub>3</sub> content in kaolinite was further decreased after Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> treatment. 展开更多
关键词 TAILINGS RESOURCE Rare Earth iron removal KAOLINITE Magnetic Separation
下载PDF
XANES analysis of the mechanisms of arsenic removal in biological iron and manganese treatment unit
20
作者 Yoko Fujikawa Daisuke Yoneda +6 位作者 Atushi Minami Hiroshi Yashima Toshio Tonokai Sotoji Tani Masami Fukui Tatuhide Hamasaki Masataka Sugahara 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期113-113,共1页
关键词 地下水 XANES 生物铁 水文化学
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部