In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of...In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of hydrochloric acid on the kinetics and mechanism of iron removal were studied. It was found that the reaction kinetic model followed the shrinking core model, and the apparent activation energy of the leaching reaction was 46.908 kJ/mol. And the apparent reaction order of iron removal with pressure leaching was 0.899. The kinetic equation was obtained and the mathematical model of iron removal from metallurgical grade silicon (MG-Si) was given as follows:The values calculated from the equation were consistent with the experimental results.展开更多
Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Me...Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile.展开更多
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffracti...Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900°C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900°C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.展开更多
Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of t...Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of AI-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in AI-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two AI-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for AI-12Si-1.7Fe alloy. And they are 82% and 18% for AI-12Si-3.4Fe alloy, respectively.展开更多
The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the op...The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfactorily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal.展开更多
The technological mineralogy of the potash feldspar was investigated and a new collector named Yb105 was adopted to remove iron from potash feldspar ores.The technological mineralogy results indicate that the main com...The technological mineralogy of the potash feldspar was investigated and a new collector named Yb105 was adopted to remove iron from potash feldspar ores.The technological mineralogy results indicate that the main components of the ore were feldspar,sericite,quartz and kaolinite,and iron mainly existed in limonite and hematite,most of which can be removed by beneficiation.The results show the benzohydroxamic acid can not only increase the recovery of iron and reduce the consumption of oleic acid collector,but also enhance the collecting performance of oleic acid at low temperature,which can realize the flotation of the ores at a low temperature and play an important role in saving energy to some extent.Compared with oleic oil,the benzohydroxamic acid had a great advantage in removing iron from potash feldspar,a potash feldspar concentrate with Fe grade of 0.23%,K2O grade of 12.59%and Na2O grade of 0.26%was obtained by flotation with Yb105 as collector,and the yield of the concentrate was 82.55%.展开更多
The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C...The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.展开更多
Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) ...Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) were stabilized with carboxymethyl cellulose(CMC) and utilized to remove Cr(Ⅵ),Cd,and Pb from an aqueous solution.Batch experiments,a Visual MINTEQ model,scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectrometer(XPS) analysis were used to determine the removal efficiencies,influencing factors,and mechanisms.The FeS NP suspension simultaneously removed Cr(Ⅵ),Cd,and Pb from an aqueous solution.The concentrations of Cr(Ⅵ),Cd,and Pb decreased from 50,10,and 50 mg·L^(-1) to 2.5,0.1,and 0.1 mg·L^(-1),respectively.The removal capacities were up to 418,96,and 585 mg per gram of stabilized FeS NPs,respectively.The acidic conditions significantly favored the removal of aqueous Cr(Ⅵ) while the alkaline conditions favored the removal of Cd and Pb.Oxygen slightly inhibited the removal of Cr(Ⅵ),but it had no significant influence on the removal of Cd and Pb.A potential mechanism was proposed for the simultaneous removal of Cr(Ⅵ),Cd,and Pb using FeS NPs.The interactions of the three heavy metals involved a cationic bridging effect on Cr(Ⅵ) by Cd,an enhanced adsorption effect on Cd by [Cr,Fe](OH)_3,precipitation of PbCrO_4,and transformation of PbCrO_4 to PbS.Therefore,FeS NPs have a high potential for use in the simultaneous removal of Cr(Ⅵ),Cd,and Pb from contaminated aqueous solutions.展开更多
The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization o...The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.展开更多
Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of...Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of Cr(Ⅲ) and Cr(V[) adsorption and their removal by SPR were investigated. The results show that the removal percentages of Cr(Ⅵ) and Cr(Ⅲ) increase with increasing SPR dosage and temperature and decrease with increasing SPR particle size and the initial concentration of chromium ions. However, the influence of pH value on the Cr(Ⅵ) removal differs from that of the Cr(Ⅲ) removal. The Cr(Ⅵ) removal percentage decreases with increasing pH values, while the Cr(Ⅲ) removal percentage increases with increasing pH value. The adsorption kinetics of Cr(Ⅵ) and Cr(Ⅲ) well fits with pseudo-second-order model. Langmuir adsorption isotherm can well describe the adsorption phenomena of chromium ions with the maximum adsorption capacity of 0.567 mg/g for Cr(Ⅵ) and 3.446 mg/g for Cr(Ⅲ). Moreover, SPR reveals higher adsorption capacity for Cr(Ⅲ) than that for Cr(Ⅵ), which implies that SPR has more potential application for Cr(Ⅲ)-containing wastewater treatment than that for Cr(Ⅵ)-containing wastewater treatment.展开更多
Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing comm...Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.展开更多
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g...The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.展开更多
Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function...Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.展开更多
Several hundred million tons of ion-adsorption rare earth tailings exist in Ganzhou, Southern China, which is a severe environmental hazard. To reduce and reutilize the tailing, kaolinite has been separated from the t...Several hundred million tons of ion-adsorption rare earth tailings exist in Ganzhou, Southern China, which is a severe environmental hazard. To reduce and reutilize the tailing, kaolinite has been separated from the tailings by mechanical separation in laboratory scale and pilot scale. The results show that the tailing is mainly composed of fine kaolinite and coarse quart. Quartz and kaolinite can be separated by sieves, shaker, spiral chute or hydrocyclone, which has the similar results in laboratory scale and pilot scale. 30.2% of the tailings can be re-sourced and applied in ceramic industries. 41.7% of kaolinite can be obtained after sorting and iron removal by magnetic separator in pilot scale, which can be applied in ceramic industries according to the Chinese national standard (TC-3). The results give a progressive solution to re-source the tailings economically.展开更多
The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)c...The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)composites(FCSc)was prepared by hydrothermal method using diatomaceous earth,hydrated lime and additive(NaF)as raw materials,which was characterized and used for the removal of Cr^3+from monoammonium phosphate solutions.The effects of different parameters,such as solution pH,initial Cr^3+concentration,temperature and contact time on the adsorption of Cr^3+onto FCSc were investigated in details.The results indicated that the adsorption process was in agreement with the pseudo-second-order kinetic model and Freundlich isotherm.The spontaneous and endothermic nature of the adsorption process was obtained by analyzing various thermodynamic parameters(△G0,△H0,and△S0).In addition,computational monte carlo simulations between Cr3+ions and FCSc were conducted to elucidate the adsorption mechanism.Such kind of porous adsorbent provided a potential application in the removal of impurities from monoammonium phosphate industry.展开更多
The removal of organic matter and iron oxides could increase and decrease soil CEC in tropical and subtropical regions, but the quantitative information is insufficient so far about the change of soil CEC, the influen...The removal of organic matter and iron oxides could increase and decrease soil CEC in tropical and subtropical regions, but the quantitative information is insufficient so far about the change of soil CEC, the influence factors and their contribution. In this study, the subhorizon soils of 24 soil series in the tropical and subtropical China were used, pH, particle size composition, organic matter, iron oxides of these samples were measured, and also CECs were measured and compared for the original soils and after the removal of organic matter and iron oxides. The results showed that, compared with CEC of the original soil, the eliminating organic matter increased soil CEC significantly by 2.28% - 56.50% with a mean of 24.02%, but the further obliterating iron oxides decreased soil CEC significantly by 0.75% - 20.30% with a mean of 7.73%. CEC after the removal of organic matter and iron oxides had positive correlation with iron oxides (p < 0.01) and negative correlation with sand content (p < 0.01 and p < 0.05). CEC after organic matter eliminated was mainly decided by iron oxides (51.68%), followed by silt content (22.19%);while CEC after iron oxides obliterated was mainly determined by iron oxides (50.55%). The increase of CEC after organic matter eliminated was co-affected by the contents of clays, slits, iron oxides and pH (22.00% - 27.34%), while the decrease of CEC after iron oxides obliterated further was dominated by the content of organic matter (66.92%). More other soil parameters should be considered for higher predicting accuracy in the regression model of soil CEC after the removal of organic matter and iron oxides, and the recommended optimal models obtained in this study were as follows: for soil CEC after organic matter eliminated, CEC = 1.665 <span style="white-space:nowrap;">−</span> 0.546pH <span style="white-space:nowrap;">−</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">−</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RSME was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, p < 0.01), while for soil CEC after iron oxides further obliterated, CEC = 1.665 <span style="white-space:nowrap;">−</span> 0.546pH <span style="white-space:nowrap;">−</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">−</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RMSE was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, p < 0.01). Further research is needed in the future as for exploring internal functional mechanism in view of soil electrochemistry and mineralogy.展开更多
Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficienc...Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficiency and pollution removal mechanism of the FeMnO were approached. Results show that the main compositions of the FeMnO are δ-manganese dioxide and ferric hydroxide. The specific surface area is about 146.22 m^2/g. The FeMnO contains rich hydroxyl with extremely strong adsorption action and chemical adsorption activity. The zero charge point of the oxide in pure water is about 8.0 of pH value. Under neutral pH value conditions, the FeMnO particle surface carried positive charges. The FeMnO particles are quasi-spherical micro-particles with irregular sizes adjoined each other to form net construction. Phosphorus removal efficiency of the FeMnO is remarkable, the total dissoluble phosphorus of settled water can be reduced below detecting level(0.3 μtg/L) at a FeMnO dosage of 6 mg/L, and total phosphorus below detecting level at a FeMnO dosage of 10 mg/L, for water samples containing total phos- phorus of 1281.70 μg/L and total dissoluble phosphorus of 1187.91 μtg/L. The mechanism of effective coagulation for phosphorus removal is combined results of multiple actions of adsorption, charge neutralization, adsorption/bridging and so on.展开更多
The pollution of iron,manganese and nitrate in groundwater is a huge threat to human beings.In this study,column experiments of ceramic,manganese sand,ceramic sand,volcanic rock,quartz sand were conducted.Iron and man...The pollution of iron,manganese and nitrate in groundwater is a huge threat to human beings.In this study,column experiments of ceramic,manganese sand,ceramic sand,volcanic rock,quartz sand were conducted.Iron and manganese contents of influent were 3.3 mg/L and 2.1 mg/L.When the biofilm became mature,the highest iron and manganese removal rate achieved by manganese sand as a filter material.Quartz did a little worse than manganese sand,but other three filter material could not reach展开更多
The ion-adsorption rare earth tailings have become a serious environmental pollution in Southern China, yet the potential of their economical value has not been fully exploited. In this work, the chemical and mineral ...The ion-adsorption rare earth tailings have become a serious environmental pollution in Southern China, yet the potential of their economical value has not been fully exploited. In this work, the chemical and mineral compositions of the ion-adsorption rare earth tailings were characterized by Mineral Liberation Analyze (MLA) and XRF. The results show that 91.98 wt% of the tailings are composed of kaolinite and quartz, latter of which was removed by the sieving method. The other minor minerals contain feldspar, biotite, muscovite, titanomagnetite and limonite. Amongst these, the iron-bearing minerals are mostly found in the titanomagnetite and limonite which can be mostly removed by using a periodic high-gradient magnetic separator with a magnetic induction of 0.6 Tesla. The Fe<sub>2</sub>O<sub>3</sub> content of the tailings changed from 2.11 wt% to 1.06 wt% after the sorting process, which met the Chinese national standard of TC-3 grade raw materials for ceramic industry applications. The Fe<sub>2</sub>O<sub>3</sub> content in kaolinite was further decreased after Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> treatment.展开更多
基金financially supported by the Program for New Century Excellent Talents of Ministry of Education of China (No.NCET-07-0387)the National Natural Science Foundation of China (No.51064014)
文摘In this paper, the kinetics of pressure leaching for purification of metallurgical grade silicon with hydrochloric acid was investigated. The effects of particle size, temperature, total pressure, and concentration of hydrochloric acid on the kinetics and mechanism of iron removal were studied. It was found that the reaction kinetic model followed the shrinking core model, and the apparent activation energy of the leaching reaction was 46.908 kJ/mol. And the apparent reaction order of iron removal with pressure leaching was 0.899. The kinetic equation was obtained and the mathematical model of iron removal from metallurgical grade silicon (MG-Si) was given as follows:The values calculated from the equation were consistent with the experimental results.
基金supported by the National Natural Science Foundation of China (No. 50574084)the National Key Technologies R&D Program in the 11th Five-Year Plan Period (No. 2006BAC02A05)and the National Basic Research Program of China (No. 2007CB613501)
文摘Oxalic acid was used for the removal of iron from the intermediates of ilmenite leached by KOH liquor. Various parameters, such as pH, temperature, initial oxalate concentration, and illumination were investigated. Meanwhile, it was found that orthorhombic crystal Ti2O2(OH)2(C2O4)-H2O formed as the leaching proceeded. Scanning electronic microscope (SEM) images implied that the formation of Ti2O2(OH)2(C2O4).H2O with good crystallinity proceeded through three stages. Calcining Ti2O2(OH)2(C2O4)·H2O, anatase (350℃) or mtile (550℃) type TiO2 was obtained, respectively. Element analysis found that the calcined product contained 94.9% TiO2 and 2.5% iron oxide, but only about 1600 ppm dissolvable iron oxide was left, which indicates that oxalic acid was comparatively effective on iron oxide removal from the intermediates. Finally, an improved route was proposed for the upgrading of ilmenite into mtile.
基金financially supported by Zhejiang Natural Science Foundation(No.Y1080393)Opening Foundation of State Key Laboratory of Clean Energy Utilization(No.ZJUEDU2012001)
文摘Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900&#176;C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900&#176;C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(No.2012R1A1A2007476)the authors express their gratitude for the financial support from Korea University of Technology and Education
文摘Recycling is a major consideration in continued aluminum use due to the enormous demand for high quality products. Some impurity elements gradually accumulate through the repetitive reuse of aluminum alloy scrap. Of them, the iron content should be suppressed under the allowed limit. In the present research, a novel separation method was introduced to remove primary iron-rich intermetallic compounds by centrifugation during solidification of AI-Si-Fe alloys. This method does not use the density difference between two phases as in other centrifugal methods, but uses the order of solidification in AI-Si-Fe alloys, because iron promotes the formation of intermetallic compounds with other alloying elements as a primary phase. Two AI-Si-Fe alloys which have different iron contents were chosen as the starting materials. The iron-rich phase could be efficiently removed by centrifuging under a centrifugal force of 40 g. Coarse intermetallic compounds were found in the sample inside the crucible, while rather fine intermetallic compounds were found in the sample outside the crucible. Primary intermetallic compounds were linked to each other via aluminum-rich matrix, and formed like a network. The highest iron removal fraction is 67% and the lowest one is 7% for AI-12Si-1.7Fe alloy. And they are 82% and 18% for AI-12Si-3.4Fe alloy, respectively.
基金the National Key Technologies R&D Program of the Tenth Five-Year Plan Period for financial support (Contract No.2001BA805B01)
文摘The aim of this article was to theoretically study diffusion and migration of chloride ions during electrochemical chloride removal. The proposed model would enable optimization of its application by predicting the optimal treatment time and current combination. A mathematical model for simulating the transport behavior of chloride ions was developed by consideration of diffusion and migration of chloride ions when a constant DC current density was applied through the marine cast iron artifacts. The corresponding tests were conducted to validate the mathematical model. This model predicted the data of the extraction ratio of the chloride ion that correlated satisfactorily with the experimental values. An important issue in electrochemical chloride removal was to understand how chloride ions moved, taking account of diffusion and migration of chloride ions and the release of binding chloride ions. The effects of the treatment time, externally applied current density, chloride diffusion coefficient, and rate constant of release of binding chloride ion on chloride removal are studied. The specific quantitative details applied to one-dimensional model were discussed here. This article has proposed a mathematical model for the first time, which was showed to be a useful tool that can reveal the ionic transport mechanism and optimize the application during electrochemical chloride removal.
基金Project(21776320)supported by the National Natural Science Foundation of ChinaProject(2016TP1007)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘The technological mineralogy of the potash feldspar was investigated and a new collector named Yb105 was adopted to remove iron from potash feldspar ores.The technological mineralogy results indicate that the main components of the ore were feldspar,sericite,quartz and kaolinite,and iron mainly existed in limonite and hematite,most of which can be removed by beneficiation.The results show the benzohydroxamic acid can not only increase the recovery of iron and reduce the consumption of oleic acid collector,but also enhance the collecting performance of oleic acid at low temperature,which can realize the flotation of the ores at a low temperature and play an important role in saving energy to some extent.Compared with oleic oil,the benzohydroxamic acid had a great advantage in removing iron from potash feldspar,a potash feldspar concentrate with Fe grade of 0.23%,K2O grade of 12.59%and Na2O grade of 0.26%was obtained by flotation with Yb105 as collector,and the yield of the concentrate was 82.55%.
基金Projects(51874017,52174236)supported by the National Natural Science Foundation of China。
文摘The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%.
基金supported by the National Natural Science Foundation of China (51778084)the National key Research&Development program of China (2018YFC1800305)+2 种基金the Chongqing Ecology and Environment Bureau (2019-128)the Sichuan Science and Technology Program (2019YFSY0005)the Large Instruments Open Foundation of Chongqing University (201903150051)。
文摘Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) were stabilized with carboxymethyl cellulose(CMC) and utilized to remove Cr(Ⅵ),Cd,and Pb from an aqueous solution.Batch experiments,a Visual MINTEQ model,scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectrometer(XPS) analysis were used to determine the removal efficiencies,influencing factors,and mechanisms.The FeS NP suspension simultaneously removed Cr(Ⅵ),Cd,and Pb from an aqueous solution.The concentrations of Cr(Ⅵ),Cd,and Pb decreased from 50,10,and 50 mg·L^(-1) to 2.5,0.1,and 0.1 mg·L^(-1),respectively.The removal capacities were up to 418,96,and 585 mg per gram of stabilized FeS NPs,respectively.The acidic conditions significantly favored the removal of aqueous Cr(Ⅵ) while the alkaline conditions favored the removal of Cd and Pb.Oxygen slightly inhibited the removal of Cr(Ⅵ),but it had no significant influence on the removal of Cd and Pb.A potential mechanism was proposed for the simultaneous removal of Cr(Ⅵ),Cd,and Pb using FeS NPs.The interactions of the three heavy metals involved a cationic bridging effect on Cr(Ⅵ) by Cd,an enhanced adsorption effect on Cd by [Cr,Fe](OH)_3,precipitation of PbCrO_4,and transformation of PbCrO_4 to PbS.Therefore,FeS NPs have a high potential for use in the simultaneous removal of Cr(Ⅵ),Cd,and Pb from contaminated aqueous solutions.
基金Projects(51804146,51964029,51664030,51564030)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900402)supported by the National Key Research and Development Program of ChinaProject supported by the Analysis and Testing Center of Kunming University of Science and Technology,China
文摘The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.
基金Projects(2006AA06Z374, 2007AA021304) supported by the National High-Tech Research and Development Program of ChinaProject(2008SK2007) supported by the Key Program of Science and Technology of Hunan Province, China
文摘Sugarcane pulp residue (SPR), a waste from sugar-refinery, which possesses a large surface area, can be used for removing chromium (Cr(Ⅲ) and Cr(Ⅵ)) from wastewater. In this work, the kinetics, isotherms of Cr(Ⅲ) and Cr(V[) adsorption and their removal by SPR were investigated. The results show that the removal percentages of Cr(Ⅵ) and Cr(Ⅲ) increase with increasing SPR dosage and temperature and decrease with increasing SPR particle size and the initial concentration of chromium ions. However, the influence of pH value on the Cr(Ⅵ) removal differs from that of the Cr(Ⅲ) removal. The Cr(Ⅵ) removal percentage decreases with increasing pH values, while the Cr(Ⅲ) removal percentage increases with increasing pH value. The adsorption kinetics of Cr(Ⅵ) and Cr(Ⅲ) well fits with pseudo-second-order model. Langmuir adsorption isotherm can well describe the adsorption phenomena of chromium ions with the maximum adsorption capacity of 0.567 mg/g for Cr(Ⅵ) and 3.446 mg/g for Cr(Ⅲ). Moreover, SPR reveals higher adsorption capacity for Cr(Ⅲ) than that for Cr(Ⅵ), which implies that SPR has more potential application for Cr(Ⅲ)-containing wastewater treatment than that for Cr(Ⅵ)-containing wastewater treatment.
基金Project (No. 20407015) supported by the National Natural Sci-ence Foundation of China
文摘Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special of China
文摘The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.
基金Supported by the State Key Development Program for Basic Research of China(2014CB460601)the International S&T Cooperation Program of China(2014DFE70070)
文摘Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.
文摘Several hundred million tons of ion-adsorption rare earth tailings exist in Ganzhou, Southern China, which is a severe environmental hazard. To reduce and reutilize the tailing, kaolinite has been separated from the tailings by mechanical separation in laboratory scale and pilot scale. The results show that the tailing is mainly composed of fine kaolinite and coarse quart. Quartz and kaolinite can be separated by sieves, shaker, spiral chute or hydrocyclone, which has the similar results in laboratory scale and pilot scale. 30.2% of the tailings can be re-sourced and applied in ceramic industries. 41.7% of kaolinite can be obtained after sorting and iron removal by magnetic separator in pilot scale, which can be applied in ceramic industries according to the Chinese national standard (TC-3). The results give a progressive solution to re-source the tailings economically.
基金the National Natural Science Foundation of China(U1633203)the Major Project of the Civil Aviation Administration of China(J2020-108)。
文摘The products of monoammonium phosphate containing Cr^3+resulted in disqualification,and further posed a serious threat to ecological environment and human beings.Herein,the porous adsorbent of fluor(calcium silicate)composites(FCSc)was prepared by hydrothermal method using diatomaceous earth,hydrated lime and additive(NaF)as raw materials,which was characterized and used for the removal of Cr^3+from monoammonium phosphate solutions.The effects of different parameters,such as solution pH,initial Cr^3+concentration,temperature and contact time on the adsorption of Cr^3+onto FCSc were investigated in details.The results indicated that the adsorption process was in agreement with the pseudo-second-order kinetic model and Freundlich isotherm.The spontaneous and endothermic nature of the adsorption process was obtained by analyzing various thermodynamic parameters(△G0,△H0,and△S0).In addition,computational monte carlo simulations between Cr3+ions and FCSc were conducted to elucidate the adsorption mechanism.Such kind of porous adsorbent provided a potential application in the removal of impurities from monoammonium phosphate industry.
文摘The removal of organic matter and iron oxides could increase and decrease soil CEC in tropical and subtropical regions, but the quantitative information is insufficient so far about the change of soil CEC, the influence factors and their contribution. In this study, the subhorizon soils of 24 soil series in the tropical and subtropical China were used, pH, particle size composition, organic matter, iron oxides of these samples were measured, and also CECs were measured and compared for the original soils and after the removal of organic matter and iron oxides. The results showed that, compared with CEC of the original soil, the eliminating organic matter increased soil CEC significantly by 2.28% - 56.50% with a mean of 24.02%, but the further obliterating iron oxides decreased soil CEC significantly by 0.75% - 20.30% with a mean of 7.73%. CEC after the removal of organic matter and iron oxides had positive correlation with iron oxides (p < 0.01) and negative correlation with sand content (p < 0.01 and p < 0.05). CEC after organic matter eliminated was mainly decided by iron oxides (51.68%), followed by silt content (22.19%);while CEC after iron oxides obliterated was mainly determined by iron oxides (50.55%). The increase of CEC after organic matter eliminated was co-affected by the contents of clays, slits, iron oxides and pH (22.00% - 27.34%), while the decrease of CEC after iron oxides obliterated further was dominated by the content of organic matter (66.92%). More other soil parameters should be considered for higher predicting accuracy in the regression model of soil CEC after the removal of organic matter and iron oxides, and the recommended optimal models obtained in this study were as follows: for soil CEC after organic matter eliminated, CEC = 1.665 <span style="white-space:nowrap;">−</span> 0.546pH <span style="white-space:nowrap;">−</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">−</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RSME was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, p < 0.01), while for soil CEC after iron oxides further obliterated, CEC = 1.665 <span style="white-space:nowrap;">−</span> 0.546pH <span style="white-space:nowrap;">−</span> 0.024OM + 0.053Fe<sub>x</sub>O<sub>y</sub> <span style="white-space:nowrap;">−</span> 0.001Silt + 0.007Clay + 0.972CEC<sub>original</sub> (R<sup>2</sup> was 0.923, RMSE was 1.55 cmol(+)<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, p < 0.01). Further research is needed in the future as for exploring internal functional mechanism in view of soil electrochemistry and mineralogy.
基金Supported by National Natural Science Foundation of China(Nos.50378004 and 50678007)Beijing Natural Science Foun-dation(No.8082009)+1 种基金Science & Technology Development Programme of Beijing Municipal Commission of Education (No.KM200610005025)Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(No. 05004014200701).
文摘Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficiency and pollution removal mechanism of the FeMnO were approached. Results show that the main compositions of the FeMnO are δ-manganese dioxide and ferric hydroxide. The specific surface area is about 146.22 m^2/g. The FeMnO contains rich hydroxyl with extremely strong adsorption action and chemical adsorption activity. The zero charge point of the oxide in pure water is about 8.0 of pH value. Under neutral pH value conditions, the FeMnO particle surface carried positive charges. The FeMnO particles are quasi-spherical micro-particles with irregular sizes adjoined each other to form net construction. Phosphorus removal efficiency of the FeMnO is remarkable, the total dissoluble phosphorus of settled water can be reduced below detecting level(0.3 μtg/L) at a FeMnO dosage of 6 mg/L, and total phosphorus below detecting level at a FeMnO dosage of 10 mg/L, for water samples containing total phos- phorus of 1281.70 μg/L and total dissoluble phosphorus of 1187.91 μtg/L. The mechanism of effective coagulation for phosphorus removal is combined results of multiple actions of adsorption, charge neutralization, adsorption/bridging and so on.
文摘The pollution of iron,manganese and nitrate in groundwater is a huge threat to human beings.In this study,column experiments of ceramic,manganese sand,ceramic sand,volcanic rock,quartz sand were conducted.Iron and manganese contents of influent were 3.3 mg/L and 2.1 mg/L.When the biofilm became mature,the highest iron and manganese removal rate achieved by manganese sand as a filter material.Quartz did a little worse than manganese sand,but other three filter material could not reach
文摘The ion-adsorption rare earth tailings have become a serious environmental pollution in Southern China, yet the potential of their economical value has not been fully exploited. In this work, the chemical and mineral compositions of the ion-adsorption rare earth tailings were characterized by Mineral Liberation Analyze (MLA) and XRF. The results show that 91.98 wt% of the tailings are composed of kaolinite and quartz, latter of which was removed by the sieving method. The other minor minerals contain feldspar, biotite, muscovite, titanomagnetite and limonite. Amongst these, the iron-bearing minerals are mostly found in the titanomagnetite and limonite which can be mostly removed by using a periodic high-gradient magnetic separator with a magnetic induction of 0.6 Tesla. The Fe<sub>2</sub>O<sub>3</sub> content of the tailings changed from 2.11 wt% to 1.06 wt% after the sorting process, which met the Chinese national standard of TC-3 grade raw materials for ceramic industry applications. The Fe<sub>2</sub>O<sub>3</sub> content in kaolinite was further decreased after Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> treatment.