Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusio...Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe+Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe+Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.展开更多
The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali bas...The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali basalt. Most of the xenoliths are rounded and small to moderate in size(typically 5~10 cm in diameter), though larger ones have been found. Nearly all small xenoliths are harzburgite and dunite. However, the big ones have zoned structure: lherzolite core and harzburgite or dunite rim with new growth clinopyroxene(Cpx) as eyeliner along their margins. Petrology, mineralogy, and Major and trace element compositions of the Nanjing peridotite xenoliths in the Cenozoic basalts are measured to provide an insight into the nature of their mantle sources and processes. Our works suggest that they were suffered from a partial melting process and subsequently underwent a process of melt-peridotite interaction. The evidences of partial melting are as follows. Firstly, the lherzolite core is mostly composed of olivine(Ol) + orthopyroxene(Opx) + Cpx with minor spinel(Spl), however, the harzburgite or dunite rim is mostly complosed of Ol + Opx with minor Cpx. Secondly, from the lherzolite core to the harzburgite or dunite rim, Ol and Opx contents are gradually increased, inversely, Cpx contents are decreased, and the Spl disappears. Thirdly, Mg# values of Ol are increased from the core(~89.5) to the rim(>92) of the peridotite xenolith, but FeO contents(from 11.0 to 8.1) in Ol are opposite.Forthly, Mg#(from 90 to 93) and Cr#(from 4 to 17) values of the Opx are increased, but its Al2O3 contents(from 5.0 to 2.0) are decreased from the core to the rim. The evidences of meltperidotite interaction are mostly from clinopyroxenes. The clinopyroxenes can roughly divided into two groups: original clinopyroxenes of the peridotite and new growth clinopyroxenes generated by melt-peridotite interaction. The original clinopyroxenes are generally in the inner of peridotite xenoliths such as lherzolite. They are mostly coarse-grained, euhedral and bottle-green. However, the new growth clinopyroxenes generally occur as eyeliner along the margin of the peridotite xenoliths. They are generally fine-grained, irregular and light green. Compared with the original clinopyroxenes, the new growth ones have low Na2O and Al2O3 and high CaO contents. The Nanjing peridotite xenoliths in the Cenozoic alkali basalts suggest that the SCLM beneath eastern China might be a fertile mantle which has had a complex history, and is now a mixture of refractory and fertile mantle domains modified by a number of events.展开更多
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is loca...Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is located on the southwestern border of the Amazonian Craton.We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite.Mantle xenoliths are mainly clinopyroxenites and garnetites.Some of the clinopyroxenites were classified as GPP–PP–PKP(garnet-phlogopite peridotite,phlogopite-peridotite,phlogopite-K-richterite peridotite)suites,and two clinopyroxenites(eclogites)and two garnetites are relicts of an ancient subducted slab.Temperature and pressure estimates yield 855–1102℃ and 3.6–7.0 GPa,respectively.Clinopyroxenes are enriched in light rare earth elements(LREE)(La_(N)/Yb_(N)=5–62;Ce_(N)/Sm_(N)=1–3;where N=primitive mantle normalized values),they have high Ca/Al ratios(10–410),low to medium Ti/Eu ratios(742–2840),and low Zr/Hf ratios(13–26),which suggest they were formed by metasomatic reactions with CO_(2)-rich silicate melts.Phlogopite with high TiO_(2)(>2.0 wt.%),Al_(2)O_(3)(>12.0 wt.%),and FeOt(5.0–13.0 wt.%)resemble those found in the groundmass of kimberlites,lamproites and lamprophyres.Conversely,phlogopite with low TiO_(2)(<1.0 wt.%)and lower Al_(2)O_(3)(<12.0 wt.%)are similar to those present in GPP-PP-PKP,and in MARID(mica-amphibole-rutile-ilmenite-diopside)and PIC(phlogopite-ilmenite-clinopyorxene)xenoliths.The GPP-PP-PKP suite of xenoliths,together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton.The Sr-Nd isotopic ratios of pyrope xenocrysts(G3,G9 and G11)from the Carolina kimberlite are characterized by high ^(143)Nd/^(144)Nd(0.51287–0.51371)and eNd(+4.55 to+20.85)accompanied with enriched ^(87)Sr/^(86)Sr(0.70405–0.71098).These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites.Based on Sr-Nd whole-rock compositions,the Carolina kimberlite has affinity with Group 1 kimberlites.The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9±5.4 Ma(2σ),which represents the cooling age after the proto-kimberlite melt metasomatism.Therefore,we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle(garnetites and eclogites);with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.展开更多
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ...The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.展开更多
In minerals of mantle xenoliths captured within Tertiary alkali-basalt from Xinchang, Zhejiang province, China, many sulfidemelt inclusions were found by the observation of polished thin section. Electron microprobe ...In minerals of mantle xenoliths captured within Tertiary alkali-basalt from Xinchang, Zhejiang province, China, many sulfidemelt inclusions were found by the observation of polished thin section. Electron microprobe analysis has been applied to detect the components of sulfide-melt inclusions. The result shows that the sulfide phases of inclusions are mainly pentlandite, and secondarily pyrrho- tite, The molar ratio of Ni to Fe, r_Ni,/r_Fe, of mineral phases in sulfide inclusions is related to olivine contents in host mantle xenoliths. The r_Ni/r_Ni, of sulfides from Xinchang samples has a possitive correlation to r_(Fe+Ni),/r_S. The r_(Fe+Ni),/r_S, becomes higher with the increasing of r_Ni/r_Fe In single sulfide-melt inclusions, r_Ni,/r_Fe, r_(Fe+Ni),/r, and Ni contents increase from the center to edge, reflecting a result of different cooling speed in an inclusion. A comparison between the data from Hannuoba, West Eifel of Germany and Nograd-Gomor of east Europe suggests that the composition of the inclusions is different for each area, which indicated that a regional differentiation of sulfide in mantle fluids.展开更多
The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,sc...The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.展开更多
Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the min...Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry.展开更多
Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin o...Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia.In this study,we thoroughly investigated 12 wehrlite xenoliths,two from each wehrlite-bearing occurrence,to determine the conditions of their formation.Specific textural features,including clinopyroxene-rich patches in an olivine-rich lithology,orthopyroxene remnants in the cores of newlyformed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock.Based on the major and trace element geochemistry of the rock-forming minerals,significant enrichment in basaltic(Fe,Mn,Ti) and high field strength elements(Nb,Ta,Hf,Zr) was observed,compared to compositions of common lherzolite xenoliths.The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved.The composition of the metasomatic agent is interpreted to be a mafic silicate melt,which was further confirmed by numerical modelling of trace elements using the plate model.The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation.The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt.We suggest that the wehrlitization and the Plio-Pleistocene basaltic volcanism are related to the same magmatic event.展开更多
Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections ar...Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.展开更多
Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
The extremely low Ti content (160-245μg/g) in clinopyroxene in some spinel peridotites from Qilin, South China is indicative of high degree of partial melting, inconsistent with their relatively high clinopyroxene mo...The extremely low Ti content (160-245μg/g) in clinopyroxene in some spinel peridotites from Qilin, South China is indicative of high degree of partial melting, inconsistent with their relatively high clinopyroxene modes (7.4%-12.4%). These clinopyroxenes show fractionated HREE patterns ((Gd/Yb)n【0.2), suggesting the involvement of garnet in the melting regime. These REE patterns can be modeled as residues of 22%-23% fractional melting from a primitive mantle, first in garnet stability field (12%) then continuing in spinel stability field (10%-11%) after breakdown of garnet to pyroxenes and spinel. Such a polybaric melting suggests the lithospheric thinning and rapid mantle upwelling in south China during the Cenozoic. This is consistent with the dominant MORB-OIB isotopic signature and high thermal gradient of the lithospheric mantle in this region, and supports the contention that the formation of South China Sea basin is related to southward migration of continental lithosphere extension, rather展开更多
Sulfide fluid incluision study on mantle xenoliths of Hannouba has been carried out by EPMA analysis. It is indicated that the Ni/Fe ratios of metal sulfides in sulfide-melt inclusions from Hannuoba seem to be related...Sulfide fluid incluision study on mantle xenoliths of Hannouba has been carried out by EPMA analysis. It is indicated that the Ni/Fe ratios of metal sulfides in sulfide-melt inclusions from Hannuoba seem to be related to host rocks. These data of lherzolite (pentlandite) are obviously higher than those of olivine pyroxenite (mainly pentlandite, partly pyrrhotine). The LRM analysis shows that sulfur (H<sub>2</sub>S+SO<sub>2</sub>) occupies larger proportion in gas composition of CO<sub>2</sub> fluid inclusions, generally more than mol 20 %. This may be related to sulfide inclusions which are frequently found.展开更多
Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman mi- crospectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qia...Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman mi- crospectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO2 fluid inclusions, (2) early carbonate melt inclu-sions, (3) late CO2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO2 fluid inclusions, most consist of high-density pure CO2, while others have small amounts of other components besides of CO2, including graphite, magnesite, Mg-calcite, CO and N2. The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO2-rich fluids/melts.展开更多
根据北部湾涠洲岛晚更新世火山岩中尖晶石二辉橄榄岩的矿物化学和形成条件推测,它们是来自地下约40km~50 km 的大陆岩石圈地幔样品。涠洲岛地幔橄榄岩中同时出现高硅(64%~68%)和低硅(49%~57%)两种熔体成分,它们普遍富碱、Al_2O_3和 H...根据北部湾涠洲岛晚更新世火山岩中尖晶石二辉橄榄岩的矿物化学和形成条件推测,它们是来自地下约40km~50 km 的大陆岩石圈地幔样品。涠洲岛地幔橄榄岩中同时出现高硅(64%~68%)和低硅(49%~57%)两种熔体成分,它们普遍富碱、Al_2O_3和 H_2O、CO_2等挥发组分(2%~5%)。研究认为,两种熔体存在不同的成因机制。高硅熔体可能与软流圈上升的玄武质岩浆和斜方辉石反应或下地壳物质循环进入地幔后的部分熔融有关。低硅熔体直接提供了富硅熔体与橄榄石发生交代作用的证据。这可以用富 SiO_2熔体+Ol→贫 SiO_2熔体+Opx 反应解释,其结果是消耗橄榄石生成斜方辉石。涠洲岛橄榄岩中两种熔体的发现,进一步提供了发生在大陆岩石圈地幔流(熔)体与橄榄岩交代作用的普遍性、复杂性,以及地幔熔体多样性的新证据。展开更多
基金financial support from National Natural Science Foundation of China (49972031 and and 40572066).
文摘Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe+Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe+Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.
基金granted by the National Natural Science Foundation of China(Nos.41772054 and 41572039)
文摘The peridotite xenoliths are widely distributed in the Cenozoic basalts, Eastern China. However, their petrogenesis is hotly controversial. The peridotite xenoliths of Nanjing are found embedded in Cenozoic alkali basalt. Most of the xenoliths are rounded and small to moderate in size(typically 5~10 cm in diameter), though larger ones have been found. Nearly all small xenoliths are harzburgite and dunite. However, the big ones have zoned structure: lherzolite core and harzburgite or dunite rim with new growth clinopyroxene(Cpx) as eyeliner along their margins. Petrology, mineralogy, and Major and trace element compositions of the Nanjing peridotite xenoliths in the Cenozoic basalts are measured to provide an insight into the nature of their mantle sources and processes. Our works suggest that they were suffered from a partial melting process and subsequently underwent a process of melt-peridotite interaction. The evidences of partial melting are as follows. Firstly, the lherzolite core is mostly composed of olivine(Ol) + orthopyroxene(Opx) + Cpx with minor spinel(Spl), however, the harzburgite or dunite rim is mostly complosed of Ol + Opx with minor Cpx. Secondly, from the lherzolite core to the harzburgite or dunite rim, Ol and Opx contents are gradually increased, inversely, Cpx contents are decreased, and the Spl disappears. Thirdly, Mg# values of Ol are increased from the core(~89.5) to the rim(>92) of the peridotite xenolith, but FeO contents(from 11.0 to 8.1) in Ol are opposite.Forthly, Mg#(from 90 to 93) and Cr#(from 4 to 17) values of the Opx are increased, but its Al2O3 contents(from 5.0 to 2.0) are decreased from the core to the rim. The evidences of meltperidotite interaction are mostly from clinopyroxenes. The clinopyroxenes can roughly divided into two groups: original clinopyroxenes of the peridotite and new growth clinopyroxenes generated by melt-peridotite interaction. The original clinopyroxenes are generally in the inner of peridotite xenoliths such as lherzolite. They are mostly coarse-grained, euhedral and bottle-green. However, the new growth clinopyroxenes generally occur as eyeliner along the margin of the peridotite xenoliths. They are generally fine-grained, irregular and light green. Compared with the original clinopyroxenes, the new growth ones have low Na2O and Al2O3 and high CaO contents. The Nanjing peridotite xenoliths in the Cenozoic alkali basalts suggest that the SCLM beneath eastern China might be a fertile mantle which has had a complex history, and is now a mixture of refractory and fertile mantle domains modified by a number of events.
基金supported by FAPDF(Call03/2018Process n°23568.93.50253.24052018)Serrapilheira Institute(Serra-1709-18152)。
文摘Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite,Pimenta Bueno Kimberlitic Field,which is located on the southwestern border of the Amazonian Craton.We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite.Mantle xenoliths are mainly clinopyroxenites and garnetites.Some of the clinopyroxenites were classified as GPP–PP–PKP(garnet-phlogopite peridotite,phlogopite-peridotite,phlogopite-K-richterite peridotite)suites,and two clinopyroxenites(eclogites)and two garnetites are relicts of an ancient subducted slab.Temperature and pressure estimates yield 855–1102℃ and 3.6–7.0 GPa,respectively.Clinopyroxenes are enriched in light rare earth elements(LREE)(La_(N)/Yb_(N)=5–62;Ce_(N)/Sm_(N)=1–3;where N=primitive mantle normalized values),they have high Ca/Al ratios(10–410),low to medium Ti/Eu ratios(742–2840),and low Zr/Hf ratios(13–26),which suggest they were formed by metasomatic reactions with CO_(2)-rich silicate melts.Phlogopite with high TiO_(2)(>2.0 wt.%),Al_(2)O_(3)(>12.0 wt.%),and FeOt(5.0–13.0 wt.%)resemble those found in the groundmass of kimberlites,lamproites and lamprophyres.Conversely,phlogopite with low TiO_(2)(<1.0 wt.%)and lower Al_(2)O_(3)(<12.0 wt.%)are similar to those present in GPP-PP-PKP,and in MARID(mica-amphibole-rutile-ilmenite-diopside)and PIC(phlogopite-ilmenite-clinopyorxene)xenoliths.The GPP-PP-PKP suite of xenoliths,together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton.The Sr-Nd isotopic ratios of pyrope xenocrysts(G3,G9 and G11)from the Carolina kimberlite are characterized by high ^(143)Nd/^(144)Nd(0.51287–0.51371)and eNd(+4.55 to+20.85)accompanied with enriched ^(87)Sr/^(86)Sr(0.70405–0.71098).These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites.Based on Sr-Nd whole-rock compositions,the Carolina kimberlite has affinity with Group 1 kimberlites.The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9±5.4 Ma(2σ),which represents the cooling age after the proto-kimberlite melt metasomatism.Therefore,we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle(garnetites and eclogites);with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.
基金supported by RBRF grants:05-05-64718,11-0500060,11-05-91060-PICS,16-05-00860the projects 77-2,65-03,02-05 UIGGM SD RAS and ALROSA Stock Company
文摘The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.
文摘In minerals of mantle xenoliths captured within Tertiary alkali-basalt from Xinchang, Zhejiang province, China, many sulfidemelt inclusions were found by the observation of polished thin section. Electron microprobe analysis has been applied to detect the components of sulfide-melt inclusions. The result shows that the sulfide phases of inclusions are mainly pentlandite, and secondarily pyrrho- tite, The molar ratio of Ni to Fe, r_Ni,/r_Fe, of mineral phases in sulfide inclusions is related to olivine contents in host mantle xenoliths. The r_Ni/r_Ni, of sulfides from Xinchang samples has a possitive correlation to r_(Fe+Ni),/r_S. The r_(Fe+Ni),/r_S, becomes higher with the increasing of r_Ni/r_Fe In single sulfide-melt inclusions, r_Ni,/r_Fe, r_(Fe+Ni),/r, and Ni contents increase from the center to edge, reflecting a result of different cooling speed in an inclusion. A comparison between the data from Hannuoba, West Eifel of Germany and Nograd-Gomor of east Europe suggests that the composition of the inclusions is different for each area, which indicated that a regional differentiation of sulfide in mantle fluids.
基金Project(2017GDASCX-0117)supported by the Guangdong Academy of Sciences,ChinaProject(201806010126)supported by the Pearl River S&T Nova Program of Guangzhou,China+3 种基金Projects(2017A050503004,2017A07071029)supported by the Guangdong Provincial Program of Science and Technology,ChinaProject(18126010)supported by the Guangxi Autonomous Regional Program of Science and Technology,ChinaProject(201802030012)supported by the Guangzhou Municipal Science and Technology Bureau,ChinaProject(2017A0109005)supported by the Sihui Plan Project of Science and Technology,China.
文摘The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.
文摘Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry.
基金This research was financially facilitated by Orlando Vasellisupported by the Bolyai Postdoctoral Fellowship Program,a Marie Curie International Reintegration Grant(Grant No.NAMS-230937)+3 种基金a postdoctoral grant(Grant No.PD101683)of the Hungarian Scientific Research Found(OTKA)to I.J.K.as well as a grant of the Hungarian Scientific Research Found(Grant No.78425)to Cs.supported by a grant from the U.S.National Science Foundation(EAR1624589)to R.J.supported by the GINOP-2.3.2-152016-00009 research program。
文摘Clinopyroxene-enriched upper mantle xenoliths classified as wehrlites are common(~20% of all xenoliths) in the central part of the Nograd-G(o| ")m(o|")r Volcanic Field(NGVF),situated in the northern margin of the Pannonian Basin in northern Hungary and southern Slovakia.In this study,we thoroughly investigated 12 wehrlite xenoliths,two from each wehrlite-bearing occurrence,to determine the conditions of their formation.Specific textural features,including clinopyroxene-rich patches in an olivine-rich lithology,orthopyroxene remnants in the cores of newlyformed clinopyroxenes and vermicular spinel forms all suggest that wehrlites were formed as a result of intensive interaction between a metasomatic agent and the peridotite wall rock.Based on the major and trace element geochemistry of the rock-forming minerals,significant enrichment in basaltic(Fe,Mn,Ti) and high field strength elements(Nb,Ta,Hf,Zr) was observed,compared to compositions of common lherzolite xenoliths.The presence of orthopyroxene remnants and geochemical trends in rock-forming minerals suggest that the metasomatic process ceased before complete wehrlitization was achieved.The composition of the metasomatic agent is interpreted to be a mafic silicate melt,which was further confirmed by numerical modelling of trace elements using the plate model.The model results also show that the melt/rock ratio played a key role in the degree of petrographic and geochemical transformation.The lack of equilibrium and the conclusions drawn by using variable lherzolitic precursors in the model both suggest that wehrlitization was the last event that occurred shortly before xenolith entrainment in the host mafic melt.We suggest that the wehrlitization and the Plio-Pleistocene basaltic volcanism are related to the same magmatic event.
基金financially supported by the Geological Survey Program of China(grants No.K1410 and DD20160346)the National Natural Foundation of China(grants No.41672078 and 41402067)
文摘Long-standing controversy persists over the presence and role of iron-rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron-rich and silica-rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock-hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks (brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar- magnetite type, K-feldspar-magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual iron- rich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatic- hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49925308 and 49733110) the Ministry of Science and Technology of China (pre-selected 39 project) and the Chinese Academy of Sciences (Grant Nos. KZ951-B1-406-04 a
文摘The extremely low Ti content (160-245μg/g) in clinopyroxene in some spinel peridotites from Qilin, South China is indicative of high degree of partial melting, inconsistent with their relatively high clinopyroxene modes (7.4%-12.4%). These clinopyroxenes show fractionated HREE patterns ((Gd/Yb)n【0.2), suggesting the involvement of garnet in the melting regime. These REE patterns can be modeled as residues of 22%-23% fractional melting from a primitive mantle, first in garnet stability field (12%) then continuing in spinel stability field (10%-11%) after breakdown of garnet to pyroxenes and spinel. Such a polybaric melting suggests the lithospheric thinning and rapid mantle upwelling in south China during the Cenozoic. This is consistent with the dominant MORB-OIB isotopic signature and high thermal gradient of the lithospheric mantle in this region, and supports the contention that the formation of South China Sea basin is related to southward migration of continental lithosphere extension, rather
文摘Sulfide fluid incluision study on mantle xenoliths of Hannouba has been carried out by EPMA analysis. It is indicated that the Ni/Fe ratios of metal sulfides in sulfide-melt inclusions from Hannuoba seem to be related to host rocks. These data of lherzolite (pentlandite) are obviously higher than those of olivine pyroxenite (mainly pentlandite, partly pyrrhotine). The LRM analysis shows that sulfur (H<sub>2</sub>S+SO<sub>2</sub>) occupies larger proportion in gas composition of CO<sub>2</sub> fluid inclusions, generally more than mol 20 %. This may be related to sulfide inclusions which are frequently found.
基金supported by the National Natural Science Foundation of China (Grant No. 40772035)National Basic Research Program of China (Grant NO. 2006CB403500)Funds for Creative Research Groups of China (Grant No. 40221301)
文摘Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman mi- crospectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO2 fluid inclusions, (2) early carbonate melt inclu-sions, (3) late CO2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO2 fluid inclusions, most consist of high-density pure CO2, while others have small amounts of other components besides of CO2, including graphite, magnesite, Mg-calcite, CO and N2. The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO2-rich fluids/melts.