A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at...A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed.展开更多
Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simu...Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.展开更多
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11505246the Major Research Plan of the National Natural Science Foundation of China under Grant No 91426301
文摘A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed.
文摘Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.