The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fra...In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.展开更多
Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed pr...Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P〈0.01), while obviously reduced the MDA and PCO contents and the RO$ levels derived from of the brain mitochondria.展开更多
Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- geni...Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.展开更多
Oxidation corrosion of steels usually occurs in contact with the oxygen-contained environment, which is accelerated by high oxygen concentration and irradiation. The oxidation mechanism of steels is investigated by th...Oxidation corrosion of steels usually occurs in contact with the oxygen-contained environment, which is accelerated by high oxygen concentration and irradiation. The oxidation mechanism of steels is investigated by the adsorption/solution of oxygen atoms on/under body-centered-cubic(bcc) iron surfaces, and diffusion of oxygen atoms on the surface and in the near-surface region. Energetic results indicate that oxygen atoms prefer to adsorb at hollow and long-bridge positions on the Fe(100) and(110) surfaces, respectively. As the coverage of oxygen atoms increases, oxygen atoms would repel each other and gradually dissolve in the near-surface and bulk region. As vacancies exist, oxygen atoms are attracted by vacancies, especially in the near-surface and bulk region. Dynamic results indicate that the diffusion of O atoms on surfaces is easier than that into near-surface, which is affected by oxygen coverage and vacancies. Moreover, the effects of oxygen concentration and irradiation on oxygen density in the near-surface and bulk region are estimated by the Mc Lean’s model with a simple hypothesis.展开更多
An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k n...An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k near the wall of materials can be numerically calculated, and combining corrosive kinetics tested by experiments, the corrosion rates can be also calculated accurately. The flow induced corrosion mechanism was further verified by numerical results in this model, and the various corrosion phenomena were explained. The modelled results also show that the ability to accurately utilize numerical method to study flow induced corrosion strongly to some extent depends on material corrosive kinetics processes tested by experiments.展开更多
TEM (Transmission Electron Microscope) observations show that corrosion process during stress corrosion cracking (SCC) enhances dislocation emission and motion; and microcrack of SCC initiates when the corrosion-enhan...TEM (Transmission Electron Microscope) observations show that corrosion process during stress corrosion cracking (SCC) enhances dislocation emission and motion; and microcrack of SCC initiates when the corrosion-enhanced dislocation emission and motion reaches a certain condition. The passive film or dealloyed layer formed during corrosion or SCC can induce a large tensile stress, which can assist the applied stress to enhance dislocation emission and motion, and then SCC occurs. Experiments show that the variation of SCC susceptibility of brass,α-Ti and stainless steel with the applied potential and pH value of the solution is consistent with that of the corrosion-induced additive stress. Molecular dynamics simulations show that a dealloyed layer can generate a tensile stress; and the corrosion (dealloyed layer)-induced tensile stress can assist the applied stress to enhance dislocation emission and crack propagation.展开更多
The susceptibility to stress corrosion cracking (SCC) of brass in an ammoniasolution with various pH values or under various applied potentials was measured at slow strain ratetests. The additive stress in the same so...The susceptibility to stress corrosion cracking (SCC) of brass in an ammoniasolution with various pH values or under various applied potentials was measured at slow strain ratetests. The additive stress in the same solution was measured using two methods. The resultsindicate that the variation of the susceptibility to SCC with pH value or with potential is in anexcellent agreement with the corrosion (passive film or dezincification layer)-induced stress. WhenpH >= 7, the corrosion-induced tensile stress and the susceptibility to SCC have maximum values andhardly change with increasing the pH value. However, when pH <7, both the corrosion-induced tensilestress and the susceptibility to SCC reduce rapidly with decreasing the pH value. Both thecorrosion-induced tensile stress and the susceptibility to SCC have maximum values at theopen-circuit potential, decrease slightly under the anodic polarization, and reduce gradually tozero under the cathodic polarization.展开更多
Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced...Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking.展开更多
Dezincification layer formed during corrosion or stress corrosion cracking (SCC) of brass in an ammonia solution could induce an additive stress. The effect of hydrogen on the dezincification layer induced stress and ...Dezincification layer formed during corrosion or stress corrosion cracking (SCC) of brass in an ammonia solution could induce an additive stress. The effect of hydrogen on the dezincification layer induced stress and the susceptibility to SCC were studied. The dezincification layer induced stress was measured using the deflection method and the flowing stress differential method, respectively. The latter measures the difference between the flowing stress of a specimen before unloading and the yield stress of the same specimen after unloading and forming a dezincification layer. The susceptibility to SCC was measured using slow strain rate test. Results show that both the dezincification layer induced stress and the susceptibility to SCC increase with increasing hydrogen concentration in a specimen. This implies that hydrogen enhanced dezincification layer induced stress is consistence with the hydrogen increased susceptibility to SCC of brass in the ammonia solution.展开更多
The graft polymerization of maleic anhydride (MA) onto preirradiated HDPE powder was studied. FTIR showed the existence of HDPE-graft-MA. The irradiation atmosphere and preirradiation dose have effects on the Percent ...The graft polymerization of maleic anhydride (MA) onto preirradiated HDPE powder was studied. FTIR showed the existence of HDPE-graft-MA. The irradiation atmosphere and preirradiation dose have effects on the Percent graft. A high degree of graft (10% ) was achieved using this process.展开更多
The highly charged ion Ar^12+ with an energy of 3 Me V is used for irradiating metallic glass (Cu47Zr45Al8)98.5Y1.5 and polycrystalline metallic W at the irradiation fluences of 1× 10^14 ions/cm2, 1 × 10^...The highly charged ion Ar^12+ with an energy of 3 Me V is used for irradiating metallic glass (Cu47Zr45Al8)98.5Y1.5 and polycrystalline metallic W at the irradiation fluences of 1× 10^14 ions/cm2, 1 × 10^15 ions/cm^2 and 1 × 10^16 ions/cm^2. The main structure of metallic glass remains an amorphous phase under different irradiation fluences according to x-ray diffraction analysis. The scanning electron microscope observation on the morphologies indicates that no significant irradiation damage occurs on the surface and cross section of the metallic glass sample after different fluences of irradiation, while a large area of irregular cracks and holes were observed on the surface of metallic W at a fluence of 1 ×10^16 ions/cm^2, with cracks and channel impairments at a certain depth from the surface. The root-mean-square (rms) roughness of metallic glass increases with increasing fluence of Ar^12+, while the reflectance decreases with increasing irradiation fluence. A nano-hardness test shows that the hardness of metallic glass decreases after irradiation. Under certain a higher capability of resistance to Ar^12+ irradiation in conditions, metallic glass (Cu47 Zr45Al8 )98.5 Y1.5 exhibits comparison with polycrystalline W.展开更多
In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irra...In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.展开更多
Sublimed D-,L-,and DL-leucine under vacuum were subjected to ^(60)Co γ-irradiation with different doses.The enantiomeric compositions of samples were determined by chirasil- val capillary column gas chromatography,an...Sublimed D-,L-,and DL-leucine under vacuum were subjected to ^(60)Co γ-irradiation with different doses.The enantiomeric compositions of samples were determined by chirasil- val capillary column gas chromatography,and the relative yields of radiolytic products(H_2, CO_2 and NH_3)were measured by packed column gas chromatography.The obtained data showed the peak area ratios D/L of DL-leucine after different absorbed doses of irradiation are all the same as that of samples with no irradiation,within the limit of error.So are the ratios for the separately irradiated D-and L-leuicne.This suggests that no asymmetric decom- position was found.The relative yields D/L of radiolytic products(H_2,CO_2 and NH_3)are very close to 1.00,indicating that the D-leucine cleavage rate was the same with that of the L-leucine.From the view of dissipative structure,an explanation for the result was presented.展开更多
The impacts of microorganism on brass corrosion were studied in static experiment in this paper. Two main factors, temperature and concentration ratio, were considered. According to the actual operation of recycling c...The impacts of microorganism on brass corrosion were studied in static experiment in this paper. Two main factors, temperature and concentration ratio, were considered. According to the actual operation of recycling cooling water system, four temperatures (15℃, 25℃, 35℃ and 45℃) and four concentration ratios (1, 2.5, 3.5 and 4.5) were selected in the experiment. Corrosion potential, current density, average corrosion rate were measured by time. The results showed that: Microorganism often aggravated corrosion of brass during initial and final stages, but alleviated its corrosion at the middle time. With the extension of time that brass immersed in the solution, the microbes began to intensify the corrosion of the metal. When concentration ratios were 2.5 and 3.5 and temperature was 15℃, microbe promoted brass corrosion obviously and corrosion degrees.展开更多
Boro-germanate glasses containing copper, i.e., xCuO(1-x)[GeO2·B2O3] subjected to gamma irradiation, were studied by means of EPR. Comparisons were made with the xCuO·(1-x)[Na2B4O7] system. Irradiation induc...Boro-germanate glasses containing copper, i.e., xCuO(1-x)[GeO2·B2O3] subjected to gamma irradiation, were studied by means of EPR. Comparisons were made with the xCuO·(1-x)[Na2B4O7] system. Irradiation induced centers were detected. These are: electron trapped at a hydrogen compensated germanium ion centers; boron oxygen hole centers and electron trapped at an oxygen vacancy centers. Strong dependence of the paramagnetic irradiation-induced centers concentration on the CuO content of the sample was evidenced.展开更多
Radiation-induced reduction of chromium(Ⅵ)(Cr(Ⅵ) by ,γ-irradiation was studied with an initial concentration of 42 mg/L in aqueous solutions. Several factors which might affect the reduction of Cr(Ⅵ) to Cr...Radiation-induced reduction of chromium(Ⅵ)(Cr(Ⅵ) by ,γ-irradiation was studied with an initial concentration of 42 mg/L in aqueous solutions. Several factors which might affect the reduction of Cr(Ⅵ) to Cr(Ⅲ) were examined, pH of aqueous solution affects the reduction efficiency significantly. Acidic condition of aqueous solution accelerates the process. At pH 2, a reduction of 86.2% was achieved with the absorbed dose of 15 kGy, while, with the same dose, at pH 5 and 7, the reduction ofCr (Ⅵ) were only 36.3% and 22.2%, respectively. Ethanol (0.1% in V:V) and sodium carbonate (1 mmol/L) were added into the solution respectively as relatively non-toxic hydroxyl radical scavengers. Reduction rate increased greatly in the presence of ethanol at each pH. Reduction efficiency of Cr(Ⅵ) was enhanced in neutral condition with the addition of sodium carbonate, however, no enhancement was found in acidic condition. The reduction of Cr(Ⅵ) was restrained when the solution was saturated with oxygen; however, the restraint was not significant.展开更多
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr...The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.展开更多
Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generation...Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generations..Theleaves of these lines started to become greenafter the fourth leaf extension,and except展开更多
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
基金Project(50925829) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(50908148) supported by the National Natural Science Foundation of ChinaProjects(2009-K4-23,2010-11-33) supported by the Research of Ministry of Housing and Urban Rural Development of China
文摘In order to perfectly reflect the dynamic corrosion of reinforced concrete (RC) cover in practical engineering,an analytic model of non-uniform corrosion induced cracking was presented based on the elastic-plastic fracture mechanics theory.Comparisons with the published experimental data show that the predictions given by the present model are in good agreement with the results both for natural exposed experiments and short-time indoor tests (the best difference is about 2.7%).Also it obviously provides much better precision than those models under the assumption of uniform corrosion (the maximal improved precision is about 48%).Therefore,it is pointed out that the so-called uniform corrosion models to describe the cover cracking of RC should be adopted cautiously.Finally,the influences of thickness of local rusty layer around the reinforcing steel bar on the critical corrosion-induced crack indexes were investigated.It is found that the thickness of local rusty layer has great effect on the critical mass loss of reinforcing steel,threshold expansion pressure,and time to cover cracking.For local rusty layer thickness with a size of a=0.5 mm,the time to cover cracking will increase by about one times when a/b (a,semi-minor axis;b,semi-major axis) changes from 0.1 to 1 mm.
基金supported by Key Program of National Natural Science Foundation of China(U1432248)National Natural Science Foundation of China(11175222,11305226)
文摘Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P〈0.01), while obviously reduced the MDA and PCO contents and the RO$ levels derived from of the brain mitochondria.
文摘Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0302400 and 2017YFA0402803)the National Nature Science Foundation of China(Grant Nos.11735015,52071314,51871207,U1832206,12075274,U1967211,52171084)Hefei Advanced Computing Center。
文摘Oxidation corrosion of steels usually occurs in contact with the oxygen-contained environment, which is accelerated by high oxygen concentration and irradiation. The oxidation mechanism of steels is investigated by the adsorption/solution of oxygen atoms on/under body-centered-cubic(bcc) iron surfaces, and diffusion of oxygen atoms on the surface and in the near-surface region. Energetic results indicate that oxygen atoms prefer to adsorb at hollow and long-bridge positions on the Fe(100) and(110) surfaces, respectively. As the coverage of oxygen atoms increases, oxygen atoms would repel each other and gradually dissolve in the near-surface and bulk region. As vacancies exist, oxygen atoms are attracted by vacancies, especially in the near-surface and bulk region. Dynamic results indicate that the diffusion of O atoms on surfaces is easier than that into near-surface, which is affected by oxygen coverage and vacancies. Moreover, the effects of oxygen concentration and irradiation on oxygen density in the near-surface and bulk region are estimated by the Mc Lean’s model with a simple hypothesis.
基金Project(50101002) supported by the National Natural Science Foundation of China
文摘An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k near the wall of materials can be numerically calculated, and combining corrosive kinetics tested by experiments, the corrosion rates can be also calculated accurately. The flow induced corrosion mechanism was further verified by numerical results in this model, and the various corrosion phenomena were explained. The modelled results also show that the ability to accurately utilize numerical method to study flow induced corrosion strongly to some extent depends on material corrosive kinetics processes tested by experiments.
基金The work was financially supported by the special Funds for the Major state Basic Research Projects(No.G19990650)the National Natural Science of China No.50231020).
文摘TEM (Transmission Electron Microscope) observations show that corrosion process during stress corrosion cracking (SCC) enhances dislocation emission and motion; and microcrack of SCC initiates when the corrosion-enhanced dislocation emission and motion reaches a certain condition. The passive film or dealloyed layer formed during corrosion or SCC can induce a large tensile stress, which can assist the applied stress to enhance dislocation emission and motion, and then SCC occurs. Experiments show that the variation of SCC susceptibility of brass,α-Ti and stainless steel with the applied potential and pH value of the solution is consistent with that of the corrosion-induced additive stress. Molecular dynamics simulations show that a dealloyed layer can generate a tensile stress; and the corrosion (dealloyed layer)-induced tensile stress can assist the applied stress to enhance dislocation emission and crack propagation.
基金This project was supported by National Natural Science Foundation of China (No.50071010)and by the special Funds for the Major Stare Basic Research Projects (19990650).]
文摘The susceptibility to stress corrosion cracking (SCC) of brass in an ammoniasolution with various pH values or under various applied potentials was measured at slow strain ratetests. The additive stress in the same solution was measured using two methods. The resultsindicate that the variation of the susceptibility to SCC with pH value or with potential is in anexcellent agreement with the corrosion (passive film or dezincification layer)-induced stress. WhenpH >= 7, the corrosion-induced tensile stress and the susceptibility to SCC have maximum values andhardly change with increasing the pH value. However, when pH <7, both the corrosion-induced tensilestress and the susceptibility to SCC reduce rapidly with decreasing the pH value. Both thecorrosion-induced tensile stress and the susceptibility to SCC have maximum values at theopen-circuit potential, decrease slightly under the anodic polarization, and reduce gradually tozero under the cathodic polarization.
基金supported by the National Natural Science Foundation of China (Grant No.50178003)
文摘Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking.
文摘Dezincification layer formed during corrosion or stress corrosion cracking (SCC) of brass in an ammonia solution could induce an additive stress. The effect of hydrogen on the dezincification layer induced stress and the susceptibility to SCC were studied. The dezincification layer induced stress was measured using the deflection method and the flowing stress differential method, respectively. The latter measures the difference between the flowing stress of a specimen before unloading and the yield stress of the same specimen after unloading and forming a dezincification layer. The susceptibility to SCC was measured using slow strain rate test. Results show that both the dezincification layer induced stress and the susceptibility to SCC increase with increasing hydrogen concentration in a specimen. This implies that hydrogen enhanced dezincification layer induced stress is consistence with the hydrogen increased susceptibility to SCC of brass in the ammonia solution.
文摘The graft polymerization of maleic anhydride (MA) onto preirradiated HDPE powder was studied. FTIR showed the existence of HDPE-graft-MA. The irradiation atmosphere and preirradiation dose have effects on the Percent graft. A high degree of graft (10% ) was achieved using this process.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11079012 and 11375037the National Basic Research Program of China under Grant No 2010CB832901
文摘The highly charged ion Ar^12+ with an energy of 3 Me V is used for irradiating metallic glass (Cu47Zr45Al8)98.5Y1.5 and polycrystalline metallic W at the irradiation fluences of 1× 10^14 ions/cm2, 1 × 10^15 ions/cm^2 and 1 × 10^16 ions/cm^2. The main structure of metallic glass remains an amorphous phase under different irradiation fluences according to x-ray diffraction analysis. The scanning electron microscope observation on the morphologies indicates that no significant irradiation damage occurs on the surface and cross section of the metallic glass sample after different fluences of irradiation, while a large area of irregular cracks and holes were observed on the surface of metallic W at a fluence of 1 ×10^16 ions/cm^2, with cracks and channel impairments at a certain depth from the surface. The root-mean-square (rms) roughness of metallic glass increases with increasing fluence of Ar^12+, while the reflectance decreases with increasing irradiation fluence. A nano-hardness test shows that the hardness of metallic glass decreases after irradiation. Under certain a higher capability of resistance to Ar^12+ irradiation in conditions, metallic glass (Cu47 Zr45Al8 )98.5 Y1.5 exhibits comparison with polycrystalline W.
文摘In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.
文摘Sublimed D-,L-,and DL-leucine under vacuum were subjected to ^(60)Co γ-irradiation with different doses.The enantiomeric compositions of samples were determined by chirasil- val capillary column gas chromatography,and the relative yields of radiolytic products(H_2, CO_2 and NH_3)were measured by packed column gas chromatography.The obtained data showed the peak area ratios D/L of DL-leucine after different absorbed doses of irradiation are all the same as that of samples with no irradiation,within the limit of error.So are the ratios for the separately irradiated D-and L-leuicne.This suggests that no asymmetric decom- position was found.The relative yields D/L of radiolytic products(H_2,CO_2 and NH_3)are very close to 1.00,indicating that the D-leucine cleavage rate was the same with that of the L-leucine.From the view of dissipative structure,an explanation for the result was presented.
文摘The impacts of microorganism on brass corrosion were studied in static experiment in this paper. Two main factors, temperature and concentration ratio, were considered. According to the actual operation of recycling cooling water system, four temperatures (15℃, 25℃, 35℃ and 45℃) and four concentration ratios (1, 2.5, 3.5 and 4.5) were selected in the experiment. Corrosion potential, current density, average corrosion rate were measured by time. The results showed that: Microorganism often aggravated corrosion of brass during initial and final stages, but alleviated its corrosion at the middle time. With the extension of time that brass immersed in the solution, the microbes began to intensify the corrosion of the metal. When concentration ratios were 2.5 and 3.5 and temperature was 15℃, microbe promoted brass corrosion obviously and corrosion degrees.
文摘Boro-germanate glasses containing copper, i.e., xCuO(1-x)[GeO2·B2O3] subjected to gamma irradiation, were studied by means of EPR. Comparisons were made with the xCuO·(1-x)[Na2B4O7] system. Irradiation induced centers were detected. These are: electron trapped at a hydrogen compensated germanium ion centers; boron oxygen hole centers and electron trapped at an oxygen vacancy centers. Strong dependence of the paramagnetic irradiation-induced centers concentration on the CuO content of the sample was evidenced.
文摘Radiation-induced reduction of chromium(Ⅵ)(Cr(Ⅵ) by ,γ-irradiation was studied with an initial concentration of 42 mg/L in aqueous solutions. Several factors which might affect the reduction of Cr(Ⅵ) to Cr(Ⅲ) were examined, pH of aqueous solution affects the reduction efficiency significantly. Acidic condition of aqueous solution accelerates the process. At pH 2, a reduction of 86.2% was achieved with the absorbed dose of 15 kGy, while, with the same dose, at pH 5 and 7, the reduction ofCr (Ⅵ) were only 36.3% and 22.2%, respectively. Ethanol (0.1% in V:V) and sodium carbonate (1 mmol/L) were added into the solution respectively as relatively non-toxic hydroxyl radical scavengers. Reduction rate increased greatly in the presence of ethanol at each pH. Reduction efficiency of Cr(Ⅵ) was enhanced in neutral condition with the addition of sodium carbonate, however, no enhancement was found in acidic condition. The reduction of Cr(Ⅵ) was restrained when the solution was saturated with oxygen; however, the restraint was not significant.
基金Item Sponsored by Special Funds for State Major Basis Research(G19990650)
文摘The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.
文摘Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generations..Theleaves of these lines started to become greenafter the fourth leaf extension,and except