期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Dependence of Initial Capacity Irreversibility on Oxygen Framework Chemistry in Li-Rich Layered Cathode Oxides
1
作者 Xiao Li Yibin Zhang +4 位作者 Bao Qiu Guoxin Chen Yuhuan Zhou Qingwen Gu Zhaoping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期57-67,共11页
The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origi... The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry. 展开更多
关键词 irreversible capacity loss Li transport kinetics Li-rich layered oxides oxygen framework chemistry tetrahedral Li
下载PDF
Practical evaluation of prelithiation strategies for next-generation lithium-ion batteries 被引量:4
2
作者 Shiming Chen Zhen Wang +6 位作者 Meng Zhang Xiaoze Shi Lu Wang Weifeng An Zikun Li Feng Pan Luyi Yang 《Carbon Energy》 SCIE CSCD 2023年第8期55-77,共23页
With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium ... With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium loss during the cycling process are critical challenges.In recent years,various prelithiation strategies have been developed to overcome these issues.Since these approaches are carried out under a wide range of conditions,it is essential to evaluate their suitability for large-scale commercial applications.In this review,these strategies are categorized based on different battery assembling stages that they are implemented in,including active material synthesis,the slurry mixing process,electrode pretreatment,and battery fabrication.Furthermore,their advantages and disadvantages in commercial production are discussed from the perspective of thermodynamics and kinetics.This review aims to provide guidance for the future development of prelithiation strategies toward commercialization,which will potentially promote the practical application of next-generation high-energy-density lithium-ion batteries. 展开更多
关键词 high-energy-density irreversible capacity loss lithium-ion batteries practical application prelithiation
下载PDF
Oxygen-defects evolution to stimulate continuous capacity increase in Co-free Li-rich layered oxides 被引量:2
3
作者 Yibin Zhang Xiaohui Wen +3 位作者 Zhepu Shi Bao Qiu Guoxin Chen Zhaoping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期259-267,I0006,共10页
Though oxygen defects are associated with deteriorated structures and aggravated cycling performance in traditional layered cathodes,the role of oxygen defects is still ambiguous in Li-rich layered oxides due to the i... Though oxygen defects are associated with deteriorated structures and aggravated cycling performance in traditional layered cathodes,the role of oxygen defects is still ambiguous in Li-rich layered oxides due to the involvement of oxygen redox.Herein,a Co-free Li-rich layered oxide Li_(1.286)Ni_(0.071)Mn_(0.643)O_(2)has been prepared by a co-precipitation method to systematically investigate the undefined effects of the oxygen defects.A significant O_(2)release and the propagation of oxygen vacancies were detected by operando differential electrochemical mass spectroscopy(DEMS)and electron energy loss spectroscopy(EELS),respectively.Scanning transmission electron microscopy-high angle annular dark field(STEMHAADF)reveals the oxygen vacancies fusing to nanovoids and monitors a stepwise electrochemical activation process of the large Li_(2)MnO_(3)domain upon cycling.Combined with the quantitative analysis conducted by the energy dispersive spectrometer(EDS),existed nano-scale oxygen defects actually expose more surface to the electrolyte for facilitating the electrochemical activation and subsequently increasing available capacity.Overall,this work persuasively elucidates the function of oxygen defects on oxygen redox in Co-free Li-rich layered oxides. 展开更多
关键词 Li-rich layered oxide irreversible oxygen loss Nano-scale oxygen defect Li_(2)MnO_(3)-domain activation
下载PDF
Expressions for Entropy Production Rate of Fuel Cells 被引量:2
4
作者 Tong-ling Lin Ying-ru Zhao Jin-can Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第4期361-366,共6页
On the basis of a general model of fuel cells, the entropy production rates of a fuel cell system under different conditions are derived by using theories of electrochemistry and thermodynamics. In order to analyze th... On the basis of a general model of fuel cells, the entropy production rates of a fuel cell system under different conditions are derived by using theories of electrochemistry and thermodynamics. In order to analyze the influence of the irreversible losses existing in an actual fuel cell, the equivalent circuit of the fuel cell is introduced, so that the irreversible factor of the fuel cell may be determined directly as a function of the internal, leak and load resistances. Moreover, the maximum power output and efficiency of the fuel cell are calculated, the optimal operation of the fuel cell is discussed, and the matching condition of the load resistance is determined. 展开更多
关键词 Fuel cell irreversible loss Entropy production rate Optimal analysis Matching condition
下载PDF
A high-durability aqueous Cu-S battery assisted by pre-copper electrochemistry
5
作者 Jing Zhao Yuruo Qi +4 位作者 Tian Huang Yi Zhang Peipei Zhi Shujuan Bao Maowen Xu 《Nano Research》 SCIE EI CSCD 2023年第7期9553-9560,共8页
Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrict... Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability.To circumvent this issue,we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery.The precopper strategy can effectively promote a stable metal dissolution/deposition,compensate for charge carriers,and facilitate reaction kinetics during the subsequent process.As a result,the aqueous Cu-S battery when coupled with S-decorated porous Ti_(3)C_(2)(S-d-Ti_(3)C_(2))exhibits excellent electrochemical performance,delivering a highly reversible capacity of 1805.4 mAh·g^(-1)in the initial cycle at 0.8 A·g^(-1),impressive cycling stability with 90.2%capacity retention over 800 cycles,and ultralow polarization~0.08 V even at a high current density of 3.1 A·g^(-1).The findings obtained in this work could pave the way for the design of highperformance sulfur-based aqueous batteries,which fill the vacancy of the necessary metal anode,delivering merits in both cost and cycle life. 展开更多
关键词 aqueous metal-sulfur batteries pre-copper treatment irreversible capacity loss electrochemical performance
原文传递
Effect of niobium substitution on microstructures and thermal stability of TbCu7-type Sm-Fe-N magnets 被引量:5
6
作者 Guiyong Wu Hongwei Li +6 位作者 Dunbo Yu Kuoshe Li Wenlong Yan Chao Yuan Liang Sun Yang Luo Kun Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期281-286,共6页
This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of... This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution. 展开更多
关键词 Magnetic properties Thermal stability Grain size Pinning field irreversible flux loss Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部