Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta...Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.展开更多
The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive ...The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive impacts at irrigated smallholders’ agricultural entrepreneurs’ household. Chi-square test was used as descriptive analysis method. The Fischer Exact tests were employed to test demography (gender, age, education, and income) in winter and summer production season of irrigated smallholder agricultural enterprises and their association with the cultivation of selected field crop (i.e. maize). The results show that gender results were not being statistically significant, as measured by the Phi measure of effect size, φ = 0.149, p = 0.011, and φ = 0.05, p = 0.392 in summer. As far as age is concern, it appears to be a statistically significant association between cultivating maize and age in winter, φ = 0.046, p = 0.730 in winter and φ = 0.172, p = 0.013. Education winter result not being statistically significant, the effect size showed a weak association, as measured by the Phi measure of effect size, φ = 0.112, p = 0.305 and φ = 0.035, p = 0.948 in summer. Income result not being statistically significant, as measured by the Phi measure of effect size, φ = 0.049, p = 0.399 and φ = 0.081, p = 0.166 in summer. In conclusion, the study shows that the development of best management practices must be based on a comprehensive analysis of the livelihoods and irrigated smallholder agricultural enterprise farming styles of participating irrigated smallholder agricultural entrepreneurs.展开更多
Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater o...Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.展开更多
Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical proper...Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical properties of typical field in the Daxia irrigation area in Qinghai Province. The results showed that soil bulk density changed from decreasing to increasing upon soil horizon; the soil horizons in 0-40 and 90-150 cm were high porosity zones, and the others were low porosi- ty area; the saturation moisture capacity, water retention of capillary porosity and field water retention all changed from decreasing to increasing upon soil horizon featured by arithmetic progression. In addition, the research area in Daxia irrigated area showed loose structure in soil horizon of 0-40 cm, compacted in 40-60 cm, and loose again in 60-200 cm vertically.展开更多
Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New...Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.展开更多
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
Heat-tolerant varieties, such as N22 and Dular, which were used in this study, usually have low yield potential and undesirable plant characteristics but combining them with high yielding and improved rice varieties, ...Heat-tolerant varieties, such as N22 and Dular, which were used in this study, usually have low yield potential and undesirable plant characteristics but combining them with high yielding and improved rice varieties, new heat-tolerant rice genotypes with high yield potential can be achieved. In this study, phenotyping and selecting desirable materials from various crosses were performed under high temperature conditions during the reproductive stage. Screening was performed in the field and glasshouse to select individuals with heat tolerance and high yield potential. Several advanced breeding lines from Gayabyeo/N22 cross produced desirable individuals with heat tolerance, resistance to pests and diseases, and high yield potential. The genetic variation in percent sterility among the selected backcross populations grown in high temperature environments showed that large number of plants can be identified and selected with lower percent sterility.展开更多
Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its wate...Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil.展开更多
The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated b...The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated by a modified Tessier sequential extraction technique.The results show that the chemical fraction of Pb in soil is mainly the Res fraction and followed by FMO fraction,and the WS,WO,FMO,and SO fractions in topsoils(0-10 cm) are higher than those in subsoils(30-40 cm).The sum of contents of WS and Ex fractions(SWE) in topsoils is significantly positively related with that in subsoils,indicating the strong mobility of Pb in WS and Ex fractions in soils,and the SWE in soils is higher than the German trigger value for the transfer path soil-plant,indicating the high bioavailability of Pb in soils of this area.Fortunately,SWE and the ratio of WS and Ex fractions(RWE) to the sum of all fractions generally decrease with the soil depth in soil profile and the RWE in soil profile is lower than 0.5%,indicating the low pollution risk for Pb in groundwater.In addition,soil particles,pH and Fe2O3 play an important role in the impact of mobility and chemical fractions of Pb in soils.展开更多
There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils ...There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils and water. This research aimed at establishing the levels of Zn2+, Cd2+, Cu2+, Cr2+, Mn2+, Fe2+ and Pb2+ metal ions in kales, soil and irrigation water on farms along river Moiben. Twenty seven samples of vegetables, soil and water samples were collected using purposive sampling method, that is, the samples were collected from the households who had kales in their farms. Samples were then dried, grounded, digested and analyzed using Inductive Couple Plasma-Optical Emission Spectroscopy (ICP-OES). The results showed that the Fe had the highest mean in soil and water with the values of 250.22 ± 85.37 and 0.72 ± 0.33 mg/kg respectively, while in kales Zn value was highest with a value of 0.0154 ± 0.007 mg/kg. The metal ion concentrations in the soils and the irrigation water were higher than in kales. The concentrations on the metal ions were following this order Fe > Mn > Zn > Cu > Cr > Pb > Cd for soil as well as for water but for the kales sample it followed slightly different order Zn > Fe > Mn > Cu > Cr > Pb > Cd. In soil samples, metal ions concentrations (mg/kg) were found to be high compared to the levels in water and kales. ANOVA tests revealed that the mean difference in heavy metals concentration from different stations within the area was insignificant (p > 0.05) with an exception of Cd (p = 0.001) in water samples, Fe (p = 0.007) in kales samples, Zn (p = 0.016) and Cd (p = 0.011) in the samples of soil. Results were compared to the acceptable levels set by World Health Organization (WHO) and the study showed that for kales, concentrations of the metal ions were all lower than the (WHO) set standards. For water samples, Fe, Pb, Mn metal ions were above the WHO set standards. The presence of the investigated heavy metals in the samples could be pointed to excessive use of agrochemicals as indicated by our earlier survey on the use of agrochemicals. We therefore recommend thorough investigations and monitoring of the said heavy metals in the commercially distributed agrochemicals.展开更多
The study estimated genetic gain for yield and other traits in winter wheat released for irrigated environments in Turkey from 1963 to 2004. Yield trials including 14 varieties were grown in 16 environments from 2008 ...The study estimated genetic gain for yield and other traits in winter wheat released for irrigated environments in Turkey from 1963 to 2004. Yield trials including 14 varieties were grown in 16 environments from 2008 to 2012 in provinces of Konya, Eski?ehir, Ankara, and Edirne. The highest yields were achieved by recent varieties Kinaci-97(5.48 t ha^(-1)),Cetinel-2000(5.39 t ha^(-1)), Alpu-2001(5.44 t ha^(-1)), Ahmetaga(5.35 t ha^(-1)), and Ekiz-2004(5.42 t ha^(-1)) compared to older varieties Yektay-406(4.17 t ha^(-1)) and Bezostaya-1(4.27 t ha^(-1))released in the 1960 s. The progress reached in grain yield in 20 years was 1.16 t ha^(-1)or58 kg ha^(-1)(1.37%) per year. This gain was mainly achieved through shorter plant height and increased harvest index. There was no clear tendency of changes in specific yield components demonstrating that new high-yielding varieties may have different ways to reach their yield potentials. The yield gains were accompanied by improved stripe rust and leaf rust resistances primarily based on adult plant resistance genes. The grain quality of the new varieties did not deteriorate over time although most of them were inferior to the bread-making quality check Bezostaya-1, a feature that may require attention in future breeding.展开更多
The most limiting factors for irrigated rice farming are water and nitrogen. Efficient water and nitrogen management has remained critical for sustainable rice production in irrigated rice farming system. Due to rapid...The most limiting factors for irrigated rice farming are water and nitrogen. Efficient water and nitrogen management has remained critical for sustainable rice production in irrigated rice farming system. Due to rapid global population growth and climate change, future rice production will depend heavily on developing strategies and practices that use water and nitrogen efficiently. The study therefore set to evaluate agronomic, water productivity and economic analysis of irrigated rice under various nitrogen and water management methods. To achieve the set objectives, field and pot experiments were carried out at the Soil and Irrigation Research Centre, University of Ghana, Kpong in 2015 and 2016 cropping season. The field experiment was laid in a split plot design with water management treatments as main plots and N fertilizer as subplot treatment. The pot experiment was carried out in a randomized complete block design with five replications. The water management treatments were;continuous submergence (SC), alternate wet and dry soil condition (AWD) and moist soil condition (MC). Nitrogen fertilizer rates were;no N fertilizer (N0), 60 kg N/ha (N1) and 90 kg N/ha (N2). Data such as yield and yield parameters of rice, water use, water productivity, costs and returns were recorded. Results obtained from both pot and field experiments revealed that rice yields were at par in AWD and SC but yields were lower in MC treatment. With N fertilizer, higher yields were observed with 90 kg N/ha. The interaction effect of submerged with 90 kg N/ha gave the highest grain yield. N fertilizer effect on water use and water productivity was ranked as N2 > N1 > N0 while water management effect on water use and water productivity was ranked in this order: SC > AWD > MC and MC > AWD > SC respectively.展开更多
This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-...This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.展开更多
Improving irrigation monitoring and efficiency is a current priority of the Government of Vietnam, focusing primarily on the agricultural sector which consumes most of the available surface and groundwater. This paper...Improving irrigation monitoring and efficiency is a current priority of the Government of Vietnam, focusing primarily on the agricultural sector which consumes most of the available surface and groundwater. This paper presents how remote sensing can be used in an integrated manner to achieve better understanding of key eco-hydrological processes including precipitation, evapotran-spiration, irrigation and crop growth. The results indicated that Normalized Difference Vegetation Index derived from Moderate Resolution Imaging Spectroradiometer (MODIS) can be applied to determine irrigated pixels on a spatial and temporal basis. The validation using measured water level showed a Pearson correlation of 0.7 proving the high accuracy of this method. The inclusion of these technologies is deemed necessary to improve water resources monitoring and management and hence, ensure long-term drought resilience and water and food security. Ca River Basin in the central Vietnam was selected as a case study to test this approach.展开更多
In Tanzania, the phenology and seasonal variations of the yields of different rice cultivars have rarely been studied, especially under fully-irrigated conditions. A trial was conducted to identify the most suitable c...In Tanzania, the phenology and seasonal variations of the yields of different rice cultivars have rarely been studied, especially under fully-irrigated conditions. A trial was conducted to identify the most suitable calendar for rice production in Tanzania under fully-irrigated conditions. Four popular rice cultivars, NERICA1, Wahiwahi, IR64 and TXD306, were transplanted monthly from January to December 2011. The four cultivars recorded similarly higher or lower yields than the annual means when transplanted in July (0.50-0.57 kg/m2) and April (0.07-0.31 kg/m2). A yield-ranking analysis showed that plants transplanted in July was the most productive while those transplanted in April was the least productive, and also revealed a yield-seasonality for irrigated rice in Tanzania, a low-yield season (April-May), a high-yield season (June-August), and an unstable-yield season (September-March). These yield seasons would appear to be closely linked to seasonal temperature variations. When transplanted in April-May, plants were exposed to very low temperatures between panicle initiation and flowering, apparently reducing yield through cold-induced sterility. Those transplanted in June-August prolonged their growth under relatively low temperatures and increased yield through increasing biomass production. In September- March, yield levels varied greatly due to the shortened phenological growth durations at higher temperatures. We conclude that under fully-irrigated conditions in Tanzania, rice should be transplanted in July to ensure the maximum production and yield stability. The yield-seasonality suggests that implementing measures to protect plants from low and high temperature stress at critical phenological stages may allow year-round rice production under fully-irrigated conditions in Tanzania.展开更多
The paper describes the water resources in the irrigated area of Ningxia, China, andthe methods for improving the utilization of the water resources, and puts forward somesuggestions so as to utilize the water resourc...The paper describes the water resources in the irrigated area of Ningxia, China, andthe methods for improving the utilization of the water resources, and puts forward somesuggestions so as to utilize the water resources rationally. The history of irrigation farming in Ningxia can be traced back to more than two thou-展开更多
Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to...Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and展开更多
The study examined the levels of resource-use efficiency of rice farmers unde,r irrigation method in Dadinkowa, Gombe state of Nigeria. Using questionnaire, data were collected during the year 2010 irrigation season f...The study examined the levels of resource-use efficiency of rice farmers unde,r irrigation method in Dadinkowa, Gombe state of Nigeria. Using questionnaire, data were collected during the year 2010 irrigation season from 120 randomly sampled rice irrigators and the data were analyzed using multiple regression and marginal analyses. Results showed that significant factors influencing irrigated rice production were labour (P 〈 0.001), land and fertilizer (P 〈 0.01). In addition, the coefficient of determination (R2), the F-ratio and the standard error of the mean (S) were found to be 0.471, 16.37*** and 8.908, respectively. The results also indicated that efficiency values of land, seeds, fertilizer and labour were 1.234, 0.498, 2.352 and 1.620, respectively. Finally, it was found that resource-use among the farmers were not efficient thus equipment, land, fertilizer and labour inputs shall be increased by 78.3%, 18.9%, 57.5% and 38.3%, respectively, while seed input shall be reduced by 50.2% for the farmers to attain optimal resource utilization.展开更多
Number of microorganisms of soils of subtropic zones in a vegetable-fodder and vegetable-bean crop rotations compared with permanent cultivation of these cultures has been studied. The results of the analyses have sho...Number of microorganisms of soils of subtropic zones in a vegetable-fodder and vegetable-bean crop rotations compared with permanent cultivation of these cultures has been studied. The results of the analyses have shown that character of change of number of the basic physiological groups of microorganisms (a bacteria, sporeforming bacteria, actinomysetes and microscopic fungies) depends not only on soil-ecological conditions but also on the kind and biological features of cultivated cultures. In soils of subtropical zones the greatest number of organisms using organic nitrogen in food was observed on alluvial meadow-forestry soils and yellowish-gley soils. Gray-brown soils are rich in actinomycetes in comparison with alluvial meadow-forestry soils, but meadow-serozem is rich in spore-forming bacteria forms. A number of microscopic fungi of the studied soils were the least. High intensity of processes of mineralization was marked in meadow-serozem soils, the least in alluvial meadow-forestry and yellowish-gley soils. Under permanent cultures the quantity of microorganisms was less, and factor of mineralization is higher above, than in crop rotation.展开更多
We conducted on-farm participatory experiments and activities for 3 years at three sites in the Fakara district of western Niger to demonstrate, verify, and evaluate crop productivity due to fertilizer application, ec...We conducted on-farm participatory experiments and activities for 3 years at three sites in the Fakara district of western Niger to demonstrate, verify, and evaluate crop productivity due to fertilizer application, economic benefits, and the dissemination of crop technology. We tested combinations of manure and mineral fertilizer on 13 exotic vegetables: bell pepper, cabbage, carrot, chili, eggplant, lettuce, melon, onion, potato, pumpkin, sweet potato, tomato, and zucchini. Farmers’ selectivity was evaluated as the number of plots that farmers selected to carry out their own trials. The application of 110 kg·N/ha manure plus 13.7 kg·N/ha mineral fertilizer increased overall vegetable yields by 161% (P < 0.01). The improvement of soil fertility increased the yield of subsequent rainfed millet by 124% (P < 0.05). Less-experienced female farmers could afford to grow cabbage, onion, lettuce, potato, and pumpkin, which yielded 4.8 - 11.4 t/ha fresh weight. Daily management by women in the vegetable gardens gave regular opportunities to chat and thus disseminate the technology.展开更多
文摘Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.
文摘The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive impacts at irrigated smallholders’ agricultural entrepreneurs’ household. Chi-square test was used as descriptive analysis method. The Fischer Exact tests were employed to test demography (gender, age, education, and income) in winter and summer production season of irrigated smallholder agricultural enterprises and their association with the cultivation of selected field crop (i.e. maize). The results show that gender results were not being statistically significant, as measured by the Phi measure of effect size, φ = 0.149, p = 0.011, and φ = 0.05, p = 0.392 in summer. As far as age is concern, it appears to be a statistically significant association between cultivating maize and age in winter, φ = 0.046, p = 0.730 in winter and φ = 0.172, p = 0.013. Education winter result not being statistically significant, the effect size showed a weak association, as measured by the Phi measure of effect size, φ = 0.112, p = 0.305 and φ = 0.035, p = 0.948 in summer. Income result not being statistically significant, as measured by the Phi measure of effect size, φ = 0.049, p = 0.399 and φ = 0.081, p = 0.166 in summer. In conclusion, the study shows that the development of best management practices must be based on a comprehensive analysis of the livelihoods and irrigated smallholder agricultural enterprise farming styles of participating irrigated smallholder agricultural entrepreneurs.
基金Supported by Water Consumption Coefficient Research in Irrigated Area in the Yellow River Areas in Qinghai Province(QX2012-019)
文摘Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.
基金Supported by Water Consumption Coefficient in the Yellow River Basin in Qinghai Province(QX2012-019)~~
文摘Influenced by climate, biology and soil properties, vertical soil profile showed stratification character in terms of basic physical properties. The research conducted measurement and analysis on basic physical properties of typical field in the Daxia irrigation area in Qinghai Province. The results showed that soil bulk density changed from decreasing to increasing upon soil horizon; the soil horizons in 0-40 and 90-150 cm were high porosity zones, and the others were low porosi- ty area; the saturation moisture capacity, water retention of capillary porosity and field water retention all changed from decreasing to increasing upon soil horizon featured by arithmetic progression. In addition, the research area in Daxia irrigated area showed loose structure in soil horizon of 0-40 cm, compacted in 40-60 cm, and loose again in 60-200 cm vertically.
基金supported by the National Key Technology R&D Program of China (2011BAD16B14, 2012BAD20B05, 2012BAD04B08, and 2013BAD20B05)
文摘Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
基金supported by the ASEAN-Korea Economic Cooperation Fundthe Ministry of Foreign Affairs and Trade, South Koreathe Rural Development Administration, Republic of Korea
文摘Heat-tolerant varieties, such as N22 and Dular, which were used in this study, usually have low yield potential and undesirable plant characteristics but combining them with high yielding and improved rice varieties, new heat-tolerant rice genotypes with high yield potential can be achieved. In this study, phenotyping and selecting desirable materials from various crosses were performed under high temperature conditions during the reproductive stage. Screening was performed in the field and glasshouse to select individuals with heat tolerance and high yield potential. Several advanced breeding lines from Gayabyeo/N22 cross produced desirable individuals with heat tolerance, resistance to pests and diseases, and high yield potential. The genetic variation in percent sterility among the selected backcross populations grown in high temperature environments showed that large number of plants can be identified and selected with lower percent sterility.
基金the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B06)the National Natural Science Foundation of China (41061032) for financial support
文摘Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil.
基金Project(41103059) supported by the National Natural Science Foundation of ChinaProject(2010CB428806-2) supported by the National Basic Research Program of China
文摘The chemical fractions,i.e.,water soluble(WS),exchangeable(Ex),carbonate(Car),weakly organic(WO),Fe-Mn oxide(FMO),strongly organic(SO),residual(Res) fraction,of Pb in irrigated soils in South China were investigated by a modified Tessier sequential extraction technique.The results show that the chemical fraction of Pb in soil is mainly the Res fraction and followed by FMO fraction,and the WS,WO,FMO,and SO fractions in topsoils(0-10 cm) are higher than those in subsoils(30-40 cm).The sum of contents of WS and Ex fractions(SWE) in topsoils is significantly positively related with that in subsoils,indicating the strong mobility of Pb in WS and Ex fractions in soils,and the SWE in soils is higher than the German trigger value for the transfer path soil-plant,indicating the high bioavailability of Pb in soils of this area.Fortunately,SWE and the ratio of WS and Ex fractions(RWE) to the sum of all fractions generally decrease with the soil depth in soil profile and the RWE in soil profile is lower than 0.5%,indicating the low pollution risk for Pb in groundwater.In addition,soil particles,pH and Fe2O3 play an important role in the impact of mobility and chemical fractions of Pb in soils.
文摘There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils and water. This research aimed at establishing the levels of Zn2+, Cd2+, Cu2+, Cr2+, Mn2+, Fe2+ and Pb2+ metal ions in kales, soil and irrigation water on farms along river Moiben. Twenty seven samples of vegetables, soil and water samples were collected using purposive sampling method, that is, the samples were collected from the households who had kales in their farms. Samples were then dried, grounded, digested and analyzed using Inductive Couple Plasma-Optical Emission Spectroscopy (ICP-OES). The results showed that the Fe had the highest mean in soil and water with the values of 250.22 ± 85.37 and 0.72 ± 0.33 mg/kg respectively, while in kales Zn value was highest with a value of 0.0154 ± 0.007 mg/kg. The metal ion concentrations in the soils and the irrigation water were higher than in kales. The concentrations on the metal ions were following this order Fe > Mn > Zn > Cu > Cr > Pb > Cd for soil as well as for water but for the kales sample it followed slightly different order Zn > Fe > Mn > Cu > Cr > Pb > Cd. In soil samples, metal ions concentrations (mg/kg) were found to be high compared to the levels in water and kales. ANOVA tests revealed that the mean difference in heavy metals concentration from different stations within the area was insignificant (p > 0.05) with an exception of Cd (p = 0.001) in water samples, Fe (p = 0.007) in kales samples, Zn (p = 0.016) and Cd (p = 0.011) in the samples of soil. Results were compared to the acceptable levels set by World Health Organization (WHO) and the study showed that for kales, concentrations of the metal ions were all lower than the (WHO) set standards. For water samples, Fe, Pb, Mn metal ions were above the WHO set standards. The presence of the investigated heavy metals in the samples could be pointed to excessive use of agrochemicals as indicated by our earlier survey on the use of agrochemicals. We therefore recommend thorough investigations and monitoring of the said heavy metals in the commercially distributed agrochemicals.
基金The International Winter Wheat Improvement Program is supported by CRP WHEAT and Ministry of Food,Agriculture and Livestock of Turkey
文摘The study estimated genetic gain for yield and other traits in winter wheat released for irrigated environments in Turkey from 1963 to 2004. Yield trials including 14 varieties were grown in 16 environments from 2008 to 2012 in provinces of Konya, Eski?ehir, Ankara, and Edirne. The highest yields were achieved by recent varieties Kinaci-97(5.48 t ha^(-1)),Cetinel-2000(5.39 t ha^(-1)), Alpu-2001(5.44 t ha^(-1)), Ahmetaga(5.35 t ha^(-1)), and Ekiz-2004(5.42 t ha^(-1)) compared to older varieties Yektay-406(4.17 t ha^(-1)) and Bezostaya-1(4.27 t ha^(-1))released in the 1960 s. The progress reached in grain yield in 20 years was 1.16 t ha^(-1)or58 kg ha^(-1)(1.37%) per year. This gain was mainly achieved through shorter plant height and increased harvest index. There was no clear tendency of changes in specific yield components demonstrating that new high-yielding varieties may have different ways to reach their yield potentials. The yield gains were accompanied by improved stripe rust and leaf rust resistances primarily based on adult plant resistance genes. The grain quality of the new varieties did not deteriorate over time although most of them were inferior to the bread-making quality check Bezostaya-1, a feature that may require attention in future breeding.
文摘The most limiting factors for irrigated rice farming are water and nitrogen. Efficient water and nitrogen management has remained critical for sustainable rice production in irrigated rice farming system. Due to rapid global population growth and climate change, future rice production will depend heavily on developing strategies and practices that use water and nitrogen efficiently. The study therefore set to evaluate agronomic, water productivity and economic analysis of irrigated rice under various nitrogen and water management methods. To achieve the set objectives, field and pot experiments were carried out at the Soil and Irrigation Research Centre, University of Ghana, Kpong in 2015 and 2016 cropping season. The field experiment was laid in a split plot design with water management treatments as main plots and N fertilizer as subplot treatment. The pot experiment was carried out in a randomized complete block design with five replications. The water management treatments were;continuous submergence (SC), alternate wet and dry soil condition (AWD) and moist soil condition (MC). Nitrogen fertilizer rates were;no N fertilizer (N0), 60 kg N/ha (N1) and 90 kg N/ha (N2). Data such as yield and yield parameters of rice, water use, water productivity, costs and returns were recorded. Results obtained from both pot and field experiments revealed that rice yields were at par in AWD and SC but yields were lower in MC treatment. With N fertilizer, higher yields were observed with 90 kg N/ha. The interaction effect of submerged with 90 kg N/ha gave the highest grain yield. N fertilizer effect on water use and water productivity was ranked as N2 > N1 > N0 while water management effect on water use and water productivity was ranked in this order: SC > AWD > MC and MC > AWD > SC respectively.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201303133-3)Tianjin Science and Technology Plan Project(14ZCDGNC00108)Agricultural Science and Technology Achievements Transformation and Extension Project of Tianjin City(201203030)~~
文摘This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.
文摘Improving irrigation monitoring and efficiency is a current priority of the Government of Vietnam, focusing primarily on the agricultural sector which consumes most of the available surface and groundwater. This paper presents how remote sensing can be used in an integrated manner to achieve better understanding of key eco-hydrological processes including precipitation, evapotran-spiration, irrigation and crop growth. The results indicated that Normalized Difference Vegetation Index derived from Moderate Resolution Imaging Spectroradiometer (MODIS) can be applied to determine irrigated pixels on a spatial and temporal basis. The validation using measured water level showed a Pearson correlation of 0.7 proving the high accuracy of this method. The inclusion of these technologies is deemed necessary to improve water resources monitoring and management and hence, ensure long-term drought resilience and water and food security. Ca River Basin in the central Vietnam was selected as a case study to test this approach.
基金Supporting Service Delivery Systems of Irrigated Agriculture (TANRICE,2008–2012)
文摘In Tanzania, the phenology and seasonal variations of the yields of different rice cultivars have rarely been studied, especially under fully-irrigated conditions. A trial was conducted to identify the most suitable calendar for rice production in Tanzania under fully-irrigated conditions. Four popular rice cultivars, NERICA1, Wahiwahi, IR64 and TXD306, were transplanted monthly from January to December 2011. The four cultivars recorded similarly higher or lower yields than the annual means when transplanted in July (0.50-0.57 kg/m2) and April (0.07-0.31 kg/m2). A yield-ranking analysis showed that plants transplanted in July was the most productive while those transplanted in April was the least productive, and also revealed a yield-seasonality for irrigated rice in Tanzania, a low-yield season (April-May), a high-yield season (June-August), and an unstable-yield season (September-March). These yield seasons would appear to be closely linked to seasonal temperature variations. When transplanted in April-May, plants were exposed to very low temperatures between panicle initiation and flowering, apparently reducing yield through cold-induced sterility. Those transplanted in June-August prolonged their growth under relatively low temperatures and increased yield through increasing biomass production. In September- March, yield levels varied greatly due to the shortened phenological growth durations at higher temperatures. We conclude that under fully-irrigated conditions in Tanzania, rice should be transplanted in July to ensure the maximum production and yield stability. The yield-seasonality suggests that implementing measures to protect plants from low and high temperature stress at critical phenological stages may allow year-round rice production under fully-irrigated conditions in Tanzania.
文摘The paper describes the water resources in the irrigated area of Ningxia, China, andthe methods for improving the utilization of the water resources, and puts forward somesuggestions so as to utilize the water resources rationally. The history of irrigation farming in Ningxia can be traced back to more than two thou-
文摘Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and
文摘The study examined the levels of resource-use efficiency of rice farmers unde,r irrigation method in Dadinkowa, Gombe state of Nigeria. Using questionnaire, data were collected during the year 2010 irrigation season from 120 randomly sampled rice irrigators and the data were analyzed using multiple regression and marginal analyses. Results showed that significant factors influencing irrigated rice production were labour (P 〈 0.001), land and fertilizer (P 〈 0.01). In addition, the coefficient of determination (R2), the F-ratio and the standard error of the mean (S) were found to be 0.471, 16.37*** and 8.908, respectively. The results also indicated that efficiency values of land, seeds, fertilizer and labour were 1.234, 0.498, 2.352 and 1.620, respectively. Finally, it was found that resource-use among the farmers were not efficient thus equipment, land, fertilizer and labour inputs shall be increased by 78.3%, 18.9%, 57.5% and 38.3%, respectively, while seed input shall be reduced by 50.2% for the farmers to attain optimal resource utilization.
文摘Number of microorganisms of soils of subtropic zones in a vegetable-fodder and vegetable-bean crop rotations compared with permanent cultivation of these cultures has been studied. The results of the analyses have shown that character of change of number of the basic physiological groups of microorganisms (a bacteria, sporeforming bacteria, actinomysetes and microscopic fungies) depends not only on soil-ecological conditions but also on the kind and biological features of cultivated cultures. In soils of subtropical zones the greatest number of organisms using organic nitrogen in food was observed on alluvial meadow-forestry soils and yellowish-gley soils. Gray-brown soils are rich in actinomycetes in comparison with alluvial meadow-forestry soils, but meadow-serozem is rich in spore-forming bacteria forms. A number of microscopic fungi of the studied soils were the least. High intensity of processes of mineralization was marked in meadow-serozem soils, the least in alluvial meadow-forestry and yellowish-gley soils. Under permanent cultures the quantity of microorganisms was less, and factor of mineralization is higher above, than in crop rotation.
文摘We conducted on-farm participatory experiments and activities for 3 years at three sites in the Fakara district of western Niger to demonstrate, verify, and evaluate crop productivity due to fertilizer application, economic benefits, and the dissemination of crop technology. We tested combinations of manure and mineral fertilizer on 13 exotic vegetables: bell pepper, cabbage, carrot, chili, eggplant, lettuce, melon, onion, potato, pumpkin, sweet potato, tomato, and zucchini. Farmers’ selectivity was evaluated as the number of plots that farmers selected to carry out their own trials. The application of 110 kg·N/ha manure plus 13.7 kg·N/ha mineral fertilizer increased overall vegetable yields by 161% (P < 0.01). The improvement of soil fertility increased the yield of subsequent rainfed millet by 124% (P < 0.05). Less-experienced female farmers could afford to grow cabbage, onion, lettuce, potato, and pumpkin, which yielded 4.8 - 11.4 t/ha fresh weight. Daily management by women in the vegetable gardens gave regular opportunities to chat and thus disseminate the technology.