期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Soil Water Distribution and Irrigation Uniformity Under Alternative Furrow Irrigation
1
作者 PANYing-hua KANGShao-zhong +1 位作者 DUTai-sheng YANGXiu-ying 《Agricultural Sciences in China》 CAS CSCD 2003年第7期786-790,共5页
Field experiments were conducted to investigate the spatial-temporal distribution and the uniformity of soil water under alternative furrow irrigation in spring maize field in Cansu Province. Results showed that durin... Field experiments were conducted to investigate the spatial-temporal distribution and the uniformity of soil water under alternative furrow irrigation in spring maize field in Cansu Province. Results showed that during the crop growing season, alternative drying and wetting furrows could incur crops to endure a water stress. thus the adsorptive ability of root system could be enhanced. As there was no zero flux plane between irrigated furrows and non-irrigated furrows under alternative furrow irrigation, lateral infiltration of water was obviously increased, thus decreasing the deep percolation. Compared with the conventional irrigation, although the water consumption in alternative furrow irrigation was reduced, the uniformity of soil water was not obviously affected. 展开更多
关键词 Alternative furrow irrigation Soil water distribution uniformity of irrigation water
下载PDF
Implications of Design, Management and Recession Phase in Drip Irrigation on the Total Distribution Efficiency in Blueberry (Vaccinium corymbosum L.) Crops in Areas with High Slopes in Concordia, Argentina 被引量:1
2
作者 A. Pannunzio E. A. Holzapfel +1 位作者 P. Texeira Soria F. Bologna 《Agricultural Sciences》 2016年第7期469-478,共11页
The increase of human population generates the need to improve the efficiency of food production. A thorough planning is required following the scope of economic and sustainable development, being irrigation a basic t... The increase of human population generates the need to improve the efficiency of food production. A thorough planning is required following the scope of economic and sustainable development, being irrigation a basic tool, however water availability is restricted and it obliges farmers to progress increasing water productivity. Irrigation uses around 70% of total available fresh water, while irrigation water application efficiency is around 40%. Irrigation systems must follow strong criteria at the design stage to achieve high values of water productivity. Maintenance is indispensable to follow the original functioning level of those systems. At last the daily precise management of systems, following soil water potential, considering the effective rain storage at root depth of the crop and the evolution of daily evapotranspiration, preserving natural resources, are relevant to achieve low values of water footprint of this crop. In an 8 year drip irrigation system, the Uniformity Coefficient of Christiansen (UCC) measured was 95.14%;the Uniform Coefficient of the Minor Quart (UCMQ) was 93.16%. The Total Distribution Efficiency (EDT) was 95.13% when measurements finished while the irrigation systems is of. When measurements also considered the volume collected during the “recession phase in drip irrigation” and the “volume of water collected during recession phase in drip irrigation” collected at different points, EDT was 95.13%. Moreover it can be seen that when three different typical soil of the area were considered, the EDT was, 91.85%, 91.47% and 90.30% respectively, according with different water storage capacity of each soil. The Total Distribution Efficient is a strong method, to evaluate the design and management of drip irrigation systems, under different design criteria, management practices and maintenance of the systems. Water footprint in a blueberry (Vaccinium corymbosum L.) crop with drip and sprinkler anti-frost system, were measure and values obtained were 846, 310, 223, 212, 172 and 218 liters per kg of fresh fruit in the period 2010-2015. The UCC and the UCMQ reflects properly the irrigation design, while the EDT reflects irrigation design, management and maintenance. Water footprint is at last the strong tool to evaluate design and operation of the irrigation system and crop management. 展开更多
关键词 Recession Phase in irrigation Water Management Drip irrigation irrigation Design Criteria Drip irrigation Management Blueberry Crop Snow Chaser Variety irrigation uniformity Water Footprint
下载PDF
Uniformity of Precipitation and Radial Profile of the Super 10 Sprinkler at Different Operating Pressures 被引量:1
3
作者 Paulo Eduardo S.Martins Elcides R.da Silva +3 位作者 Juan Gabriel C.L.Ruiz Gustavo R.Barbosa Jose Renato Zanini Marcilio V.Martins Filho 《Journal of Water Resource and Protection》 2014年第11期951-960,共10页
The study aimed to evaluate the effect of operating parameters of the sprinkler Super 10, manufactured by NaanDanJain, with green, yellow and blue nozzles on the hydraulic characterization, so that this information ca... The study aimed to evaluate the effect of operating parameters of the sprinkler Super 10, manufactured by NaanDanJain, with green, yellow and blue nozzles on the hydraulic characterization, so that this information can contribute to a better dimensioning of systems and management of irrigated areas. For the determination of UC and UD the radial method was used and with the aid of computer application CATCH 3D the overlapping of water slides with ten spacings was calculated. The results demonstrate that the mechanism used for the fractionation of the water jet of sprinkler Super 10 is efficient because it presented good uniformity of water distribution and low amplitude of precipitation. For high uniformity of distribution of water in the larger wetting radii, it is recommended to work with Super 10 sprinkler using the green nozzle, with a pressure of 40 mH2O and spacing between sprinklers and lateral lines 12 × 12 m. 展开更多
关键词 Hydraulic Performance uniformity irrigation Water Distribution Profile
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部