The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d...The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.展开更多
Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,...Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,have independently been shown to induce host defense peptide(HDP)synthesis.However,the potential synergy between these two compounds remains unexplored.Methods To investigate the possible synergistic effect between DCA and butyrate in regulating HDP synthesis and barrier function,we treated chicken HD11 macrophage cells and jejunal explants with DCA and sodium butyrate(NaB),either individually or in combination,for 24 h.Subsequently,we performed RNA isolation and reverse transcrip-tion-quantitative PCR to analyze HDP genes as well as the major genes associated with barrier function.To further determine the synergy between DCA and NaB in enhancing NE resistance,we conducted two independent trials with Cobb broiler chicks.In each trial,the diet was supplemented with DCA or NaB on the day-of-hatch,followed by NE induction through sequential challenges with Eimeria maxima and Clostridium perfringens on d 10 and 14,respectively.We recorded animal mortality after infection and assessed intestinal lesions on d 17.The impact of DCA and NaB on the microbiota in the ileum and cecum was evaluated through bacterial 16S rRNA gene sequencing.Results We found that the combination of DCA and NaB synergistically induced multiple HDP genes in both chicken HD11 cells and jejunal explants.Additionally,the gene for claudin-1,a major tight junction protein,also exhibited synergistic induction in response to DCA and NaB.Furthermore,dietary supplementation with a combination of 0.75 g/kg DCA and 1 g/kg NaB led to a significant improvement in animal survival and a reduction in intestinal lesions compared to either compound alone in a chicken model of NE.Notably,the cecal microbiota of NE-infected chickens showed a marked decrease in SCFA-producing bacteria such as Bacteroides,Faecalibacterium,and Cuneatibacter,with lactobacilli becoming the most dominant species.However,supplementation with DCA and NaB largely restored the intestinal microbiota to healthy levels.Conclusions DCA synergizes with NaB to induce HDP and claudin-1 expression and enhance NE resistance,with potential for further development as cost-effective antibiotic alternatives.展开更多
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the...Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.展开更多
Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mu...Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mutations in the amino acids of its capsid protein play crucial roles in altering viral virulence,immunogenicity,host selection,and other abilities.In this study,the epidemiology of FPV was studied using 746 gastrointestinal swab samples derived from cats that presented gastrointestinal symptoms specifcally,diarrhea or vomiting during the period spanning from 2018 to 2022.The overall prevalence of FPV-positive patients among these samples was determined to be 45.4%.Capsid(virion)protein 2(VP2)gene of each FPV-positive sample was sequenced and amplifed,yielding 65 VP2 sequences.Among them,six VP2 gene sequences were detected in the majority of the samples test positive for FPV,and these positive samples originated from a diverse range of geographical locations.These isolates were named FPV-6,FPV-10,FPV-15,FPV-251,FPV-271 and FPV-S2.Additionally,the substitution of Ala300Pro(A300P)in VP2 was detected for the frst time in feline-derived FPV(FPV-251).FPV-251 isolate,with this substitution in VP2 protein,exhibited stable proliferative capacity in Madin-Darby canine kidney(MDCK)cells and A72 cells.FPV-271 was selected as the FPV control isolate due to its single amino acid diference from VP2 protein of FPV-251 at position 300(FPV-271 has alanine,while FPV-251 has proline).After oral infection,both FPV-251 and FPV-271 isolates caused feline panleukopenia,which is characterized by clinical signs of enterocolitis.However,FPV-251 can infect dogs through the oral route and cause gastrointestinal(GI)symptoms with lesions in the intestine and mesenteric lymph nodes(MLNs)of infected dogs.This is the frst report on the presence of an A300P substitution in VP2 protein of feline-derived FPV.Additionally,FPV isolate with a substitution of A300P at VP2 protein demonstrated efcient replication capabilities in canine cell lines and the ability to infect dogs.展开更多
Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell su...Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell survival,demand extensive investigation.Disease-associated stress microenvironments further complicate outcomes.This debate underscores the need for a deeper understanding of the phenotypes of transplanted MSCs and their environment-induced fluctuations.Additionally,questions arise about how to predict,track,and comprehend cell fate post-transplantation.In vivo cellular imaging has emerged as a critical requirement for both short-and long-term safety and efficacy studies.However,translating preclinical imaging methods to clinical settings remains challenging.The fate and function of transplanted cells within the host environment present intricate challenges,including MSC engraftment,variability,and inconsistencies between preclinical and clinical data.The study explored the impact of high glucose concentrations on MSC survival in diabetic environments,emphasizing mitochondrial factors.Preserving these factors may enhance MSC survival,suggesting potential strategies involving genetic modification,biomaterials,and nanoparticles.Understanding stressors in diabetic patients is crucial for predicting the effects of MSC-based therapies.These multifaceted challenges call for a holistic approach involving the incorporation of large-scale data,computational disease modeling,and possibly artificial intelligence to enable deterministic insights.展开更多
In November 26 and 27,more than 30 winners of the Panda Cup Foreign Student Essay Contest traveled to Qingtian County,Lishui City,which is located in the mountainous region of southern Zhejiang Province.During the tri...In November 26 and 27,more than 30 winners of the Panda Cup Foreign Student Essay Contest traveled to Qingtian County,Lishui City,which is located in the mountainous region of southern Zhejiang Province.During the trip,young students from more than 20 countries experienced the cultural charm of Qingtian,acquired a better understanding of the ecological system of rice-fish symbiosis,and gained greater appreciation for the economic and trade development prospects of the county,a well-known ancestral home of overseas Chinese.展开更多
The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1...The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.展开更多
This editorial reviews the molecular mechanisms underlying the roles of the long non-coding RNA(lncRNA)small nucleolar RNA host gene 16(SNHG16)in digestive system cancers based on two recent studies on lncRNAs in dige...This editorial reviews the molecular mechanisms underlying the roles of the long non-coding RNA(lncRNA)small nucleolar RNA host gene 16(SNHG16)in digestive system cancers based on two recent studies on lncRNAs in digestive system tumors.The first study,by Zhao et al,explored how hBD-1 affects colon cancer,via the lncRNA TCONS_00014506,by inhibiting mTOR and promoting autophagy.The second one,by Li et al,identified the lncRNA prion protein testis specific(PRNT)as a factor in oxaliplatin resistance by sponging ZNF184 to regulate HIPK2 and influence colorectal cancer progression and chemoresistance,suggesting PRNT as a potential therapeutic target for colorectal cancer.Both of these two articles discuss the mechanisms by which lncRNAs contribute to the development and progression of digestive system cancers.As a recent research hotspot,SNHG16 is a typical lncRNA that has been extensively studied for its association with digestive system cancers.The prevailing hypothesis is that SNHG16 participates in the development and progression of digestive system tumors by acting as a competing endogenous RNA,interacting with other proteins,regulating various genes,and affecting downstream target molecules.This review systematically examines the recently reported biological functions,related molecular mechanisms,and potential clinical significance of SNHG16 in various digestive system cancers,and explores the relationship between SNHG16 and digestive system cancers.The findings suggest that SNHG16 may serve as a potential biomarker and therapeutic target for human digestive system cancers.展开更多
Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolite...Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolites,as well as the host metabolism,contribute to regulating the milk protein yield(MPY).Methods The rumen fluid,serum and milk of 12 Holstein cows with the same diet(45%coarseness ratio),parity(2–3 fetuses)and lactation days(120–150 d)were used for the microbiome and metabolome analysis.Rumen metabolism(rumen metabolome)and host metabolism(blood and milk metabolome)were connected using a weighted gene co-expression network(WGCNA)and the structural equation model(SEM)analyses.Results Two different ruminal enterotypes,with abundant Prevotella and Ruminococcus,were identified as type1 and type2.Of these,a higher MPY was found in cows with ruminal type2.Interestingly,[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae(the differential bacteria)were the hub genera of the network.In addition,differential ruminal,serum and milk metabolome between enterotypes were identified,where the cows with type2 had higher L-tyrosine of rumen,ornithine and L-tryptophan of serum,and tetrahydroneopterin,palmitoyl-L-carnitine,S-lactoylglutathione of milk,which could provide more energy and substrate for MPY.Further,based on the identi-fied modules of ruminal microbiome,as well as ruminal serum and milk metabolome using WGCNA,the SEM analysis indicated that the key ruminal microbial module1,which contains the hub genera of the network([Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae)and high abundance of bacteria(Prevotella and Ruminococcus),could regulate the MPY by module7 of rumen,module2 of blood,and module7 of milk,which contained L-tyrosine and L-tryptophan.Therefore,in order to more clearly reveal the process of rumen bacterial regulation of MPY,we established the path of SEM based on the L-tyrosine,L-tryptophan and related components.The SEM based on the metabolites suggested that[Ruminococcus]gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione,which could enhance pyruvate metabolism.Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine,which could provide the substrate for MPY.Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus,and the hub genera of[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan.Moreover,the combined analysis of enterotype,WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism,which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.展开更多
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenber...The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.展开更多
Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of ...Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.展开更多
Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycni...Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.展开更多
Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complic...Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complications such as graft-versus-host disease(GVHD)which is a major cause of morbidity and mortality after allogeneic HSCT.It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids(SCFAs)such as butyrate in the experimental models of GVHD after allogeneic HSCT.Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis,increasing the risk of GVHD.Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria,which might be associated with the biology of regulatory T cells(Tregs).Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT.Here,we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity,which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.展开更多
Many carbonate-hosted talc mineralization,which are widespread in South China,exclusively developed in Carboniferous dolomitic limestone with many siliceous bands and nodules,and cherts.One of those typical deposits i...Many carbonate-hosted talc mineralization,which are widespread in South China,exclusively developed in Carboniferous dolomitic limestone with many siliceous bands and nodules,and cherts.One of those typical deposits is the Guling talc deposit in Mashan County,central Guangxi province,with a talc reserve of1.51 million tons.Mineral associations in the deposit are sample,mainly including talc and calcite.In this paper,Sm-Nd isotopic system and rare earth elements and yttrium(REE + Y) for the hydrothermal calcite intergrown with talc are used to constrain the age and origin of the talc mineralization.The hydrothermal calcite samples from the deposit display Sm and Nd concentrations ranging from 0.18 to 0.85 and 0.85 to 4.56 ppm,respectively,and variable Sm/Nd ratios of 0.21-0.24.These calcites further yield an Sm-Nd isochron age of 232 ±19 Ma(2a)(MSWD = 0.47) with an concordant initial ^(143)Nd-^(144)Nd ratios of 0.511967 ± 0.000017,which should be interpreted as the mineralization age of the Guling talc deposit.In addition,the calcite samples are enriched in REE with the variable SREE contents ranging from 4.82 to21.50 ppm and display relatively consistent chondritenormalized REE + Y patterns with the LREE enrichment(LREE/HREE=2.00-3.60)and the obvious negative Eu(δEu=0.52-0.68)and Ce(δCe=0.16-0.33)anomalies.The Y/Ho ratios of seven calcites varies from 43.30 to59.34,with a mean value of 49.73.The available mineral associations and REE parameters(i.e.,REE patterns and Y/Ho ratios) of those calcites indicate that the ore-forming fluids of the talc mineralization be probably derived from the meteoric waters,in particular evolved ones in the Karst areas and the ore-forming materials(e.g.,Si and Mg) are likely to be originated from the ore-bearing dolostone in the Yanguan Formation(C_1y) and underlying siliceous rocks in the Liujiang Formation(D_3l).Furthermore,the talc mineralization could take place within a hydrothermal system with relative oxidizing environment and middle temperature,due to the obvious negative Eu and Ce anomalies in the calcites in the Guling deposit.展开更多
This paper compares the two different rural management methods of"emperor’s power far away from the countryside"and"town in charge of village affairs",which shows that the extreme grass-roots mana...This paper compares the two different rural management methods of"emperor’s power far away from the countryside"and"town in charge of village affairs",which shows that the extreme grass-roots management system is not conducive to rural development.This paper also points out that rural development needs to find a road of sustainable development in line with its own characteristics,which is the fundamental shortcut to change poverty and become rich for a long time.展开更多
Based on analysis of schedule setting and player performance of the sixth CCTV host contest, we discuss the selection contest idea and point out that the good quality of thinking is the core host of outstanding qualit...Based on analysis of schedule setting and player performance of the sixth CCTV host contest, we discuss the selection contest idea and point out that the good quality of thinking is the core host of outstanding quality, and the thinking quality of excellent host has three dimensions (depth of thinking, thinking, breadth and sensitivity thinking). Hosts should made efforts to nurture their spirituality and personality under the guidance of this scale.展开更多
Objective: To observe human to mouse one way mixed lymphocyte(MLC); And to set up the xeno-grats verse host disease Xeno-graft host disease(XGVHD) model,probing its immunologic mechamism.Methods: Mouse splenic lympho...Objective: To observe human to mouse one way mixed lymphocyte(MLC); And to set up the xeno-grats verse host disease Xeno-graft host disease(XGVHD) model,probing its immunologic mechamism.Methods: Mouse splenic lymphocyte were collected in asepsis and treated by mitomycin as activating cell. Human Peripheral blood lymphocytes (hPBL)were separated and gathered as reacting cell; Mouse splenic lymphocyte and hPBL were mixed to incubate for a week. Destroying recipient (mouse) immune system by total body irradiation (TBI) and intraperitoneal injecting CTX、MTX; Separating and collecting hPBL; Injecting hPBL to mouse by caudal vein. Results; ①HPBL in the experiment groups(mixed mouse lymphocyte) proliferated obviously, the amount of 3H-TdR in corporation increased evidently(P<0.05); The mean percentage of CD 4、CD 8、IgG 、IgM positive cells rose markedly. ②Experiment groups,the hPBL were found in the spleen and kidney tissue, fas protein expressing, we occasionally discovered and apoptosis cells.Conclusion: The human to mouse one-way MLC has obvious lymphocyte proliferation. By these means,we succeed in inducing XGVHD and setting up a XGVHD model.展开更多
Host defense peptides(HDPs)are small molecules with broad-spectrum antimicrobial activities against infectious bacteria,viruses,and fungi.Increasing evidence suggests that HDPs can also indirectly protect hosts by mod...Host defense peptides(HDPs)are small molecules with broad-spectrum antimicrobial activities against infectious bacteria,viruses,and fungi.Increasing evidence suggests that HDPs can also indirectly protect hosts by modulating their immune responses.Due to these dual roles,HDPs have been considered one of the most promising antibiotic substitutes to improve growth performance,intestinal health,and immunity in farm animals.This review describes the antimicrobial and immunomodulatory roles of host defense peptides and their recent applications in animal production.展开更多
文摘The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.
基金supported by the USDA National Institute of Food and Agriculture grants (2020-67016-31619 and 2023-67015-39095)the Ralph F. and Leila W. Boulware Endowment Fund+1 种基金Oklahoma Agricultural Experiment Station Project H-3112supported by a USDA National Institute of Food and Agriculture Predoctoral Fellowship grant (2021-67034-35184)
文摘Background Necrotic enteritis(NE)is a major enteric disease in poultry,yet effective mitigation strategies remain elusive.Deoxycholic acid(DCA)and butyrate,two major metabolites derived from the intestinal microbiota,have independently been shown to induce host defense peptide(HDP)synthesis.However,the potential synergy between these two compounds remains unexplored.Methods To investigate the possible synergistic effect between DCA and butyrate in regulating HDP synthesis and barrier function,we treated chicken HD11 macrophage cells and jejunal explants with DCA and sodium butyrate(NaB),either individually or in combination,for 24 h.Subsequently,we performed RNA isolation and reverse transcrip-tion-quantitative PCR to analyze HDP genes as well as the major genes associated with barrier function.To further determine the synergy between DCA and NaB in enhancing NE resistance,we conducted two independent trials with Cobb broiler chicks.In each trial,the diet was supplemented with DCA or NaB on the day-of-hatch,followed by NE induction through sequential challenges with Eimeria maxima and Clostridium perfringens on d 10 and 14,respectively.We recorded animal mortality after infection and assessed intestinal lesions on d 17.The impact of DCA and NaB on the microbiota in the ileum and cecum was evaluated through bacterial 16S rRNA gene sequencing.Results We found that the combination of DCA and NaB synergistically induced multiple HDP genes in both chicken HD11 cells and jejunal explants.Additionally,the gene for claudin-1,a major tight junction protein,also exhibited synergistic induction in response to DCA and NaB.Furthermore,dietary supplementation with a combination of 0.75 g/kg DCA and 1 g/kg NaB led to a significant improvement in animal survival and a reduction in intestinal lesions compared to either compound alone in a chicken model of NE.Notably,the cecal microbiota of NE-infected chickens showed a marked decrease in SCFA-producing bacteria such as Bacteroides,Faecalibacterium,and Cuneatibacter,with lactobacilli becoming the most dominant species.However,supplementation with DCA and NaB largely restored the intestinal microbiota to healthy levels.Conclusions DCA synergizes with NaB to induce HDP and claudin-1 expression and enhance NE resistance,with potential for further development as cost-effective antibiotic alternatives.
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金supported by a grant from Chinese Agriculture Research System of MOF and MARA (Grant No.CARS-24-C-04)Zhejiang Provincial Natural Science Foundation (Grant No.LZ24C140001)+1 种基金National Natural Science Foundation of China (Grant Nos.32370144,32070165)the K.C.Wong Magna Fund in Ningbo University。
文摘Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.
基金the Experimental Animal Research Project of Hubei Province(Grant No.2023CFA005).
文摘Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mutations in the amino acids of its capsid protein play crucial roles in altering viral virulence,immunogenicity,host selection,and other abilities.In this study,the epidemiology of FPV was studied using 746 gastrointestinal swab samples derived from cats that presented gastrointestinal symptoms specifcally,diarrhea or vomiting during the period spanning from 2018 to 2022.The overall prevalence of FPV-positive patients among these samples was determined to be 45.4%.Capsid(virion)protein 2(VP2)gene of each FPV-positive sample was sequenced and amplifed,yielding 65 VP2 sequences.Among them,six VP2 gene sequences were detected in the majority of the samples test positive for FPV,and these positive samples originated from a diverse range of geographical locations.These isolates were named FPV-6,FPV-10,FPV-15,FPV-251,FPV-271 and FPV-S2.Additionally,the substitution of Ala300Pro(A300P)in VP2 was detected for the frst time in feline-derived FPV(FPV-251).FPV-251 isolate,with this substitution in VP2 protein,exhibited stable proliferative capacity in Madin-Darby canine kidney(MDCK)cells and A72 cells.FPV-271 was selected as the FPV control isolate due to its single amino acid diference from VP2 protein of FPV-251 at position 300(FPV-271 has alanine,while FPV-251 has proline).After oral infection,both FPV-251 and FPV-271 isolates caused feline panleukopenia,which is characterized by clinical signs of enterocolitis.However,FPV-251 can infect dogs through the oral route and cause gastrointestinal(GI)symptoms with lesions in the intestine and mesenteric lymph nodes(MLNs)of infected dogs.This is the frst report on the presence of an A300P substitution in VP2 protein of feline-derived FPV.Additionally,FPV isolate with a substitution of A300P at VP2 protein demonstrated efcient replication capabilities in canine cell lines and the ability to infect dogs.
基金Supported by the Romanian Ministry of Research,Innovation and Digitization,CNCS/CCCDI-UEFISCDI,project number ERANETEURONANOMED-3-OASIs,within PNCDI III(contract number 273/2022).
文摘Mesenchymal stromal cells(MSCs)hold great promise for tissue regeneration in debilitating disorders.Despite reported improvements,the short-term outcomes of MSC transplantation,which is possibly linked to poor cell survival,demand extensive investigation.Disease-associated stress microenvironments further complicate outcomes.This debate underscores the need for a deeper understanding of the phenotypes of transplanted MSCs and their environment-induced fluctuations.Additionally,questions arise about how to predict,track,and comprehend cell fate post-transplantation.In vivo cellular imaging has emerged as a critical requirement for both short-and long-term safety and efficacy studies.However,translating preclinical imaging methods to clinical settings remains challenging.The fate and function of transplanted cells within the host environment present intricate challenges,including MSC engraftment,variability,and inconsistencies between preclinical and clinical data.The study explored the impact of high glucose concentrations on MSC survival in diabetic environments,emphasizing mitochondrial factors.Preserving these factors may enhance MSC survival,suggesting potential strategies involving genetic modification,biomaterials,and nanoparticles.Understanding stressors in diabetic patients is crucial for predicting the effects of MSC-based therapies.These multifaceted challenges call for a holistic approach involving the incorporation of large-scale data,computational disease modeling,and possibly artificial intelligence to enable deterministic insights.
文摘In November 26 and 27,more than 30 winners of the Panda Cup Foreign Student Essay Contest traveled to Qingtian County,Lishui City,which is located in the mountainous region of southern Zhejiang Province.During the trip,young students from more than 20 countries experienced the cultural charm of Qingtian,acquired a better understanding of the ecological system of rice-fish symbiosis,and gained greater appreciation for the economic and trade development prospects of the county,a well-known ancestral home of overseas Chinese.
基金National Institutes of Health(NIH)(grants R01 A/130092 and Al161085).
文摘The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.
文摘This editorial reviews the molecular mechanisms underlying the roles of the long non-coding RNA(lncRNA)small nucleolar RNA host gene 16(SNHG16)in digestive system cancers based on two recent studies on lncRNAs in digestive system tumors.The first study,by Zhao et al,explored how hBD-1 affects colon cancer,via the lncRNA TCONS_00014506,by inhibiting mTOR and promoting autophagy.The second one,by Li et al,identified the lncRNA prion protein testis specific(PRNT)as a factor in oxaliplatin resistance by sponging ZNF184 to regulate HIPK2 and influence colorectal cancer progression and chemoresistance,suggesting PRNT as a potential therapeutic target for colorectal cancer.Both of these two articles discuss the mechanisms by which lncRNAs contribute to the development and progression of digestive system cancers.As a recent research hotspot,SNHG16 is a typical lncRNA that has been extensively studied for its association with digestive system cancers.The prevailing hypothesis is that SNHG16 participates in the development and progression of digestive system tumors by acting as a competing endogenous RNA,interacting with other proteins,regulating various genes,and affecting downstream target molecules.This review systematically examines the recently reported biological functions,related molecular mechanisms,and potential clinical significance of SNHG16 in various digestive system cancers,and explores the relationship between SNHG16 and digestive system cancers.The findings suggest that SNHG16 may serve as a potential biomarker and therapeutic target for human digestive system cancers.
基金the National Natural Science Foundation of China(32272829,32072761,31902184)Shaanxi Provincial Science and Technology Association Young Talents Lifting Program Project(20220203).
文摘Background Dairy cows’lactation performance is the outcome of the crosstalk between ruminal microbial metabo-lism and host metabolism.However,it is still unclear to what extent the rumen microbiome and its metabolites,as well as the host metabolism,contribute to regulating the milk protein yield(MPY).Methods The rumen fluid,serum and milk of 12 Holstein cows with the same diet(45%coarseness ratio),parity(2–3 fetuses)and lactation days(120–150 d)were used for the microbiome and metabolome analysis.Rumen metabolism(rumen metabolome)and host metabolism(blood and milk metabolome)were connected using a weighted gene co-expression network(WGCNA)and the structural equation model(SEM)analyses.Results Two different ruminal enterotypes,with abundant Prevotella and Ruminococcus,were identified as type1 and type2.Of these,a higher MPY was found in cows with ruminal type2.Interestingly,[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae(the differential bacteria)were the hub genera of the network.In addition,differential ruminal,serum and milk metabolome between enterotypes were identified,where the cows with type2 had higher L-tyrosine of rumen,ornithine and L-tryptophan of serum,and tetrahydroneopterin,palmitoyl-L-carnitine,S-lactoylglutathione of milk,which could provide more energy and substrate for MPY.Further,based on the identi-fied modules of ruminal microbiome,as well as ruminal serum and milk metabolome using WGCNA,the SEM analysis indicated that the key ruminal microbial module1,which contains the hub genera of the network([Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae)and high abundance of bacteria(Prevotella and Ruminococcus),could regulate the MPY by module7 of rumen,module2 of blood,and module7 of milk,which contained L-tyrosine and L-tryptophan.Therefore,in order to more clearly reveal the process of rumen bacterial regulation of MPY,we established the path of SEM based on the L-tyrosine,L-tryptophan and related components.The SEM based on the metabolites suggested that[Ruminococcus]gauvreauii group could inhibit the energy supply of serum tryptophan to MPY by milk S-lactoylglutathione,which could enhance pyruvate metabolism.Norank_f_Ruminococcaceae could increase the ruminal L-tyrosine,which could provide the substrate for MPY.Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus,and the hub genera of[Ruminococcus]gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis by affecting the ruminal L-tyrosine and L-tryptophan.Moreover,the combined analysis of enterotype,WGCNA and SEM could be used to connect rumen microbial metabolism with host metabolism,which provides a fundamental understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291。
文摘The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41272092,41421002 and 41072068)Program for Changjiang Scholars and Innovative Research Team in University(Grant IRT1281)+1 种基金Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2013JZ013)Graduate Innovation Funds of Northwest University,China(Grant No.YZZ12006)
文摘Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.
基金the National Key R&D Program of China(2018YFD0200500)the National Natural Science Foundation of China(31960524,31071641 and 32072358)+1 种基金the Fundamental Research Funds for the Central Universities(2452019046)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JZ-15,2017JM3006)。
文摘Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.
文摘Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complications such as graft-versus-host disease(GVHD)which is a major cause of morbidity and mortality after allogeneic HSCT.It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids(SCFAs)such as butyrate in the experimental models of GVHD after allogeneic HSCT.Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis,increasing the risk of GVHD.Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria,which might be associated with the biology of regulatory T cells(Tregs).Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT.Here,we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity,which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.
基金funded by The 12th Five Year Plan project of State Key Laboratory of Ore-deposit Geochemistry,Chinese Academy of Sciences(SKLODG-ZY125-04)China Natural Science Foundation(41372105)
文摘Many carbonate-hosted talc mineralization,which are widespread in South China,exclusively developed in Carboniferous dolomitic limestone with many siliceous bands and nodules,and cherts.One of those typical deposits is the Guling talc deposit in Mashan County,central Guangxi province,with a talc reserve of1.51 million tons.Mineral associations in the deposit are sample,mainly including talc and calcite.In this paper,Sm-Nd isotopic system and rare earth elements and yttrium(REE + Y) for the hydrothermal calcite intergrown with talc are used to constrain the age and origin of the talc mineralization.The hydrothermal calcite samples from the deposit display Sm and Nd concentrations ranging from 0.18 to 0.85 and 0.85 to 4.56 ppm,respectively,and variable Sm/Nd ratios of 0.21-0.24.These calcites further yield an Sm-Nd isochron age of 232 ±19 Ma(2a)(MSWD = 0.47) with an concordant initial ^(143)Nd-^(144)Nd ratios of 0.511967 ± 0.000017,which should be interpreted as the mineralization age of the Guling talc deposit.In addition,the calcite samples are enriched in REE with the variable SREE contents ranging from 4.82 to21.50 ppm and display relatively consistent chondritenormalized REE + Y patterns with the LREE enrichment(LREE/HREE=2.00-3.60)and the obvious negative Eu(δEu=0.52-0.68)and Ce(δCe=0.16-0.33)anomalies.The Y/Ho ratios of seven calcites varies from 43.30 to59.34,with a mean value of 49.73.The available mineral associations and REE parameters(i.e.,REE patterns and Y/Ho ratios) of those calcites indicate that the ore-forming fluids of the talc mineralization be probably derived from the meteoric waters,in particular evolved ones in the Karst areas and the ore-forming materials(e.g.,Si and Mg) are likely to be originated from the ore-bearing dolostone in the Yanguan Formation(C_1y) and underlying siliceous rocks in the Liujiang Formation(D_3l).Furthermore,the talc mineralization could take place within a hydrothermal system with relative oxidizing environment and middle temperature,due to the obvious negative Eu and Ce anomalies in the calcites in the Guling deposit.
文摘This paper compares the two different rural management methods of"emperor’s power far away from the countryside"and"town in charge of village affairs",which shows that the extreme grass-roots management system is not conducive to rural development.This paper also points out that rural development needs to find a road of sustainable development in line with its own characteristics,which is the fundamental shortcut to change poverty and become rich for a long time.
文摘Based on analysis of schedule setting and player performance of the sixth CCTV host contest, we discuss the selection contest idea and point out that the good quality of thinking is the core host of outstanding quality, and the thinking quality of excellent host has three dimensions (depth of thinking, thinking, breadth and sensitivity thinking). Hosts should made efforts to nurture their spirituality and personality under the guidance of this scale.
文摘Objective: To observe human to mouse one way mixed lymphocyte(MLC); And to set up the xeno-grats verse host disease Xeno-graft host disease(XGVHD) model,probing its immunologic mechamism.Methods: Mouse splenic lymphocyte were collected in asepsis and treated by mitomycin as activating cell. Human Peripheral blood lymphocytes (hPBL)were separated and gathered as reacting cell; Mouse splenic lymphocyte and hPBL were mixed to incubate for a week. Destroying recipient (mouse) immune system by total body irradiation (TBI) and intraperitoneal injecting CTX、MTX; Separating and collecting hPBL; Injecting hPBL to mouse by caudal vein. Results; ①HPBL in the experiment groups(mixed mouse lymphocyte) proliferated obviously, the amount of 3H-TdR in corporation increased evidently(P<0.05); The mean percentage of CD 4、CD 8、IgG 、IgM positive cells rose markedly. ②Experiment groups,the hPBL were found in the spleen and kidney tissue, fas protein expressing, we occasionally discovered and apoptosis cells.Conclusion: The human to mouse one-way MLC has obvious lymphocyte proliferation. By these means,we succeed in inducing XGVHD and setting up a XGVHD model.
文摘Host defense peptides(HDPs)are small molecules with broad-spectrum antimicrobial activities against infectious bacteria,viruses,and fungi.Increasing evidence suggests that HDPs can also indirectly protect hosts by modulating their immune responses.Due to these dual roles,HDPs have been considered one of the most promising antibiotic substitutes to improve growth performance,intestinal health,and immunity in farm animals.This review describes the antimicrobial and immunomodulatory roles of host defense peptides and their recent applications in animal production.