In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution ...Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution times of the ions stored in the ring.However,the revolution times cannot be resolved for particles with nearly the same mass-to-charge(m/q)ratios.To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios,in our early work on particle identification,we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons.Here,the previous data analysis method is further improved by considering the signal amplitudes,detection efficiencies,and number of stored ions in the ring.A sensitive Z-dependent parameter is introduced in the data analysis,leading to a better resolution of ^(34)Ar^(18+) and ^(51)Co^(27+) with A/Z=17/9.The mean revolution times of ^(34)Ar^(18+) and ^(51)Co^(27+) are deduced,although their time difference is merely 1.8 ps.The uncorrected,overlapped peak of these ions has a full width at half maximum of 7.7 ps.The mass excess of ^(51)Co was determined to be-27;332e41T keV,which is in agreement with the previous value of-27;342e48T keV.展开更多
The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic...The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.展开更多
In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. H...In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. However, themass-to-charge ratio (m=q) is only related to the revolution time (T) under the condition that is equal to taccording to the following equation:展开更多
Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam sepa...Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-ight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS.展开更多
Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly r...Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly reducesthe influence of the velocity difference on the ion revolution periods, the revolution period difference ΔT =T ??TRof a stored ion with respect to a reference time TR is directly related to its mass-to-charge ratio difference Δ(m=q),written in the first order as:展开更多
Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebee...Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebeen measured. In order to improve the performance of the IMS experiments and to provide a reliable tool fordesigning and preparing the future experiments, a simulation code, named SimCSR is developed.Presently, six-dimension phase-space linear transmission theory is applied to simulate the transmission of ionsin the experimental storage ring (CSRe). The basic algorithm is Bf = MBi. The Bi and Bf are six-dimensionphase-space vectors of ions at the entrance and exit of each element of the CSRe lattice, respectively. M is a6-by-6-dimension first-order transfer matrix of each element. M is calculated using formulas described in Ref.[1]. Inthe simulations, the ring lattice is considered in detail, and the same magnetic setting as in our previous experimentwith 58Ni projectile fragments[2] is considered. The ions are assumed to circulate 300 turns inside the CSRe.展开更多
Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof ex...Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof exotic nuclei[1]. Recently, masses of many proton-rich nuclides were accurately determined at the HIRFL-CSRfacility[2]. In this paper, we described the first isochronous mass measurement of neutron-rich nuclides at CSRe.This experiment was performed at the end of 2011. In the experiment, the primary beam of 86Kr28+ ions wasaccumulated and accelerated to an energy of 460.65 MeV/u in the synchrotron CSRm. The 86Kr28+ ions were fastextracted and focused on a 15 mm thick beryllium target which was placed at the entrance of the RIBLL2 (anin-flight fragment separator).展开更多
This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator.Such systems have the form x=-y+xf(x,y),y=x+yf(x,y),where f(x,y)=a_(1)x+a_(2)xy+a_(3)xy^(2)+...This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator.Such systems have the form x=-y+xf(x,y),y=x+yf(x,y),where f(x,y)=a_(1)x+a_(2)xy+a_(3)xy^(2)+a_(4)xy^(3)+a_(5)xy^(4)=xσ(y),and any zero of 1+a_(1)y+a_(2)y^(2)+a_(3)y^(3)+a_(4)y^(4)+a_(5)y^(5),y=y is an invariant straight line.At last,all global phase portraits are drawn on the Poincare disk.展开更多
In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.Ho...In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.展开更多
The ophiolite suite in Shexian County, Anhui Province extends more than 40 km in NE orientation. It is called Fuchuan ophiolite because its outcrop is the most complete in Fuchuan. This ophiolite which upthrusts over ...The ophiolite suite in Shexian County, Anhui Province extends more than 40 km in NE orientation. It is called Fuchuan ophiolite because its outcrop is the most complete in Fuchuan. This ophiolite which upthrusts over the Precambrian Shexian granodiorite body is composed of dunite, harzburgite, cumulate pyroxenite, spilite, keratophyre and tuffaceous phyllite (Fig. 1).展开更多
In this paper, we study the integrability and linearization of a class of quadratic quasi-analytic switching systems. We improve an existing method to compute the focus values and periodic constants of quasianalytic s...In this paper, we study the integrability and linearization of a class of quadratic quasi-analytic switching systems. We improve an existing method to compute the focus values and periodic constants of quasianalytic switching systems. In particular, with our method, we demonstrate that the dynamical behaviors of quasi-analytic switching systems are more complex than those of continuous quasi-analytic systems, by showing the existence of six and seven limit cycles in the neighborhood of the origin and infinity, respectively, in a quadratic quasi-analytic switching system. Moreover, explicit conditions are obtained for classifying the centers and isochronous centers of the system.展开更多
The concept of isochronous mass spectrometry (IMS) applying two time-of-flight (TOF) detectors originated many years ago at GSI. However, the corresponding method for data analysis has never been discussed in deta...The concept of isochronous mass spectrometry (IMS) applying two time-of-flight (TOF) detectors originated many years ago at GSI. However, the corresponding method for data analysis has never been discussed in detail. Recently, two TOF detectors have been installed at CSRe and the new working mode of the ring is under test. In this paper, a data analysis method for this mode is introduced and tested with a series of simulations. The results show that the new IMS method can significantly improve mass resolving power via the additional velocity information of stored ions. This improvement is especially important for nuclides with Lorentz factor γ-value far away from the transition point yt of the storage ring CSRe.展开更多
The combination of in-flight fragment separator and the isochronous mass spectrometry(IMS)in storage rings have been proven to be a powerful tool for the precision mass measurements of shortlived exotic nuclei. In IMS...The combination of in-flight fragment separator and the isochronous mass spectrometry(IMS)in storage rings have been proven to be a powerful tool for the precision mass measurements of shortlived exotic nuclei. In IMS, the mass-over-charge ratio is only related to the revolution period of stored ions, and the relative mass resolution can reach up to the order of 10-6. However, the instability of the magnetic field of storage ring deteriorates the resolution of revolution period, making it very difficult to distinguish the ions with very close mass-over-charge ratio via their revolution periods. To improve the resolution of revolution periods, a new method of weighted shift correction(WSC) has been developed to accurately correct the influence of the magnetic field instabilities in the isochronous mass measurements of ^(58)Ni projectile fragments. By using the new method, the influence of unstable magnetic fields can be greatly reduced, and the mass resolution can be improved by a factor up to 1.7. Moreover, for the ions that still cannot be distinguished after correcting the magnetic field instabilities, we developed a new method of pulse height analysis for particle identification. By analyzing the mean pulse amplitude of each ion from the timing detector, the stored ions with close mass-over-charge ratios but different charge states such as ^(34)Ar and ^(51)Co can be identified, and thus the mass of ^(51)Co can be determined. The charge-resolved IMS may be helpful in the future experiments of isochronous mass measurement even for N = Z nuclei.展开更多
In this paper, the authors are concerned with the forced isochronous oscillators with a repulsive singularity and a bounded nonlinearity x'' + V'(x) + g(x) = e(t, x, x'),where the assumptions on V, g a...In this paper, the authors are concerned with the forced isochronous oscillators with a repulsive singularity and a bounded nonlinearity x'' + V'(x) + g(x) = e(t, x, x'),where the assumptions on V, g and e are regular, described precisely in the introduction.Using a variant of Moser's twist theorem of invariant curves, the authors show the existence of quasi-periodic solutions and boundedness of all solutions. This extends the result of Liu to the case of the above system where e depends on the velocity.展开更多
In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By com...In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By computing the Liapunov constants and periodic constants carefully, we show that for a certain Z4-equivariant quintic systems, there are four fine focuses of five order and five limit cycles can bifurcate from each, we also find conditions of center and isochronous center for this system. The process of proof is algebraic and symbolic by using common computer algebra soft such as Mathematica, the expressions after being simplified in this paper are simple relatively. Moreover, what is worth mentioning is that the result of 20 small limit cycles bifurcating from several fine focuses is good for Z4-equivariant quintic system and the results where multiple singular points become isochronous centers at the same time are less in published references.展开更多
This paper considers the problems of determining center or focus and isochronous centers for the planar quasi-analytic systems. Two recursive formulas to determine the focal values and period constants are given. The ...This paper considers the problems of determining center or focus and isochronous centers for the planar quasi-analytic systems. Two recursive formulas to determine the focal values and period constants are given. The convergence of first integral near the center is proved. Using the general results to quasi-quadratic systems, the problem of the isochronous center of the origin is completely solved.展开更多
In this paper, the definition of generalized isochronous center is given in order to study unitedly real isochronous center and linearizability of polynomial differential systems. An algorithm to compute generalized p...In this paper, the definition of generalized isochronous center is given in order to study unitedly real isochronous center and linearizability of polynomial differential systems. An algorithm to compute generalized period constants is obtained, which is a good method to find the necessary conditions of generalized isochronous center for any rational resonance ratio. Its two linear recursive formulas are symbolic and easy to realize with computer algebraic system. The function of time-angle difference is introduced to prove the sufficient conditions. As the application, a class of real cubic Kolmogorov system is investigated and the generalized isochronous center conditions of the origin are obtained.展开更多
The Isochronous Mass Spectrometry (IMS) developed at GSI is a very effcient method for direct mass measurements of short-lived nuclides. By taking a recent IMS experiment as an example, the identification procedure of...The Isochronous Mass Spectrometry (IMS) developed at GSI is a very effcient method for direct mass measurements of short-lived nuclides. By taking a recent IMS experiment as an example, the identification procedure of the Time-of-Flight (TOF) spectrum measured in this experiment is discussed.展开更多
Recent results and progress of mass measurements of neutron-rich nuclei utilizing Isochronous Mass Spectrometry(IMS) based on the HIRFL-CSR complex at Lanzhou are reported. The nuclei of interest were produced through...Recent results and progress of mass measurements of neutron-rich nuclei utilizing Isochronous Mass Spectrometry(IMS) based on the HIRFL-CSR complex at Lanzhou are reported. The nuclei of interest were produced through projectile fragmentation of primary86 Kr ions at a realistic energy of460.65 Me V/u. After in-flight separation by the fragment separator RIBLL2, the fragments were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of their revolution times. The re-determined masses were compared and evaluated with other mass measurements, and the impact of these evaluated masses on the shell evolution study is discussed.展开更多
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金This work was supported by the National Key R&D Program of China(Nos.2016YFA0400504 and 2018YFA0404401)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34000000)+4 种基金the National Natural Science Foundation of China(Nos.11905261,11805032,11975280,and 11605248)the CAS "Light of West China" Program,the China Postdoctoral Science Foundation(No.2019M660250)the FRIB-CSC Fellowship,China(No.201704910964)the International Postdoctoral Exchange Fellowship Program 2017 by the Office of China Postdoctoral Council(No.60 Document of OCPC,2017)the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Programme(No.682841 "ASTRUm").
文摘Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution times of the ions stored in the ring.However,the revolution times cannot be resolved for particles with nearly the same mass-to-charge(m/q)ratios.To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios,in our early work on particle identification,we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons.Here,the previous data analysis method is further improved by considering the signal amplitudes,detection efficiencies,and number of stored ions in the ring.A sensitive Z-dependent parameter is introduced in the data analysis,leading to a better resolution of ^(34)Ar^(18+) and ^(51)Co^(27+) with A/Z=17/9.The mean revolution times of ^(34)Ar^(18+) and ^(51)Co^(27+) are deduced,although their time difference is merely 1.8 ps.The uncorrected,overlapped peak of these ions has a full width at half maximum of 7.7 ps.The mass excess of ^(51)Co was determined to be-27;332e41T keV,which is in agreement with the previous value of-27;342e48T keV.
基金Supported by the National Natural Science Foundation of China( No.195 310 70 ) and Natural Science Fundation ofHubei Province( No.98J12 1)
文摘The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.
文摘In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. However, themass-to-charge ratio (m=q) is only related to the revolution time (T) under the condition that is equal to taccording to the following equation:
文摘Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-ight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS.
文摘Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly reducesthe influence of the velocity difference on the ion revolution periods, the revolution period difference ΔT =T ??TRof a stored ion with respect to a reference time TR is directly related to its mass-to-charge ratio difference Δ(m=q),written in the first order as:
文摘Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebeen measured. In order to improve the performance of the IMS experiments and to provide a reliable tool fordesigning and preparing the future experiments, a simulation code, named SimCSR is developed.Presently, six-dimension phase-space linear transmission theory is applied to simulate the transmission of ionsin the experimental storage ring (CSRe). The basic algorithm is Bf = MBi. The Bi and Bf are six-dimensionphase-space vectors of ions at the entrance and exit of each element of the CSRe lattice, respectively. M is a6-by-6-dimension first-order transfer matrix of each element. M is calculated using formulas described in Ref.[1]. Inthe simulations, the ring lattice is considered in detail, and the same magnetic setting as in our previous experimentwith 58Ni projectile fragments[2] is considered. The ions are assumed to circulate 300 turns inside the CSRe.
文摘Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof exotic nuclei[1]. Recently, masses of many proton-rich nuclides were accurately determined at the HIRFL-CSRfacility[2]. In this paper, we described the first isochronous mass measurement of neutron-rich nuclides at CSRe.This experiment was performed at the end of 2011. In the experiment, the primary beam of 86Kr28+ ions wasaccumulated and accelerated to an energy of 460.65 MeV/u in the synchrotron CSRm. The 86Kr28+ ions were fastextracted and focused on a 15 mm thick beryllium target which was placed at the entrance of the RIBLL2 (anin-flight fragment separator).
基金supported by National Natural Science Foundation of China(No.12301197)Natural Science Foundation of Henan(No.232300420343)+2 种基金Science and Technology Research Project of Henan Province(No.232102210057)Scientific Research Foundation for Doctoral Scholars of Haust(No.13480077)Natural Science Foundation of Hunan(No.2021JJ30166)。
文摘This paper studies the global phase portraits of uniform isochronous centers system of degree six with polynomial commutator.Such systems have the form x=-y+xf(x,y),y=x+yf(x,y),where f(x,y)=a_(1)x+a_(2)xy+a_(3)xy^(2)+a_(4)xy^(3)+a_(5)xy^(4)=xσ(y),and any zero of 1+a_(1)y+a_(2)y^(2)+a_(3)y^(3)+a_(4)y^(4)+a_(5)y^(5),y=y is an invariant straight line.At last,all global phase portraits are drawn on the Poincare disk.
基金supported in part by the National Key R&D Program of China(No.2023YFA1606401)CAS Project for Young Scientists in Basic Research(No.YSBR-002)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34000000)and the NSFC(Nos.12305126,12135017,12121005)Y.M.X.acknowledges the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021419)X.L.Y.acknowledges the support from the Yong Scholar of Regional Development,CAS(No.[2023]15).
文摘In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.
基金Project supported by the National Natural Science Foundation of China
文摘The ophiolite suite in Shexian County, Anhui Province extends more than 40 km in NE orientation. It is called Fuchuan ophiolite because its outcrop is the most complete in Fuchuan. This ophiolite which upthrusts over the Precambrian Shexian granodiorite body is composed of dunite, harzburgite, cumulate pyroxenite, spilite, keratophyre and tuffaceous phyllite (Fig. 1).
基金supported by National Natural Science Foundation of China(Grant Nos.11371373 and 11601212)Applied Mathematics Enhancement Program of Linyi Universitythe Natural Science and Engineering Research Council of Canada(Grant No.R2686A02)
文摘In this paper, we study the integrability and linearization of a class of quadratic quasi-analytic switching systems. We improve an existing method to compute the focus values and periodic constants of quasianalytic switching systems. In particular, with our method, we demonstrate that the dynamical behaviors of quasi-analytic switching systems are more complex than those of continuous quasi-analytic systems, by showing the existence of six and seven limit cycles in the neighborhood of the origin and infinity, respectively, in a quadratic quasi-analytic switching system. Moreover, explicit conditions are obtained for classifying the centers and isochronous centers of the system.
基金Supported by the 973 Program of China(2013CB834401)National Nature Science Foundation of China(U1232208,U1432125,11205205,11035007)the Helmholtz-CAS Joint Research Group(Group No.HCJRG-108)
文摘The concept of isochronous mass spectrometry (IMS) applying two time-of-flight (TOF) detectors originated many years ago at GSI. However, the corresponding method for data analysis has never been discussed in detail. Recently, two TOF detectors have been installed at CSRe and the new working mode of the ring is under test. In this paper, a data analysis method for this mode is introduced and tested with a series of simulations. The results show that the new IMS method can significantly improve mass resolving power via the additional velocity information of stored ions. This improvement is especially important for nuclides with Lorentz factor γ-value far away from the transition point yt of the storage ring CSRe.
基金Natural Science Foundation of China(U1232208,U1432125,11205205,11035007,11235001,11320101004,11575007)National Basic Research Program of China(973 Program)(2013CB834401)
文摘The combination of in-flight fragment separator and the isochronous mass spectrometry(IMS)in storage rings have been proven to be a powerful tool for the precision mass measurements of shortlived exotic nuclei. In IMS, the mass-over-charge ratio is only related to the revolution period of stored ions, and the relative mass resolution can reach up to the order of 10-6. However, the instability of the magnetic field of storage ring deteriorates the resolution of revolution period, making it very difficult to distinguish the ions with very close mass-over-charge ratio via their revolution periods. To improve the resolution of revolution periods, a new method of weighted shift correction(WSC) has been developed to accurately correct the influence of the magnetic field instabilities in the isochronous mass measurements of ^(58)Ni projectile fragments. By using the new method, the influence of unstable magnetic fields can be greatly reduced, and the mass resolution can be improved by a factor up to 1.7. Moreover, for the ions that still cannot be distinguished after correcting the magnetic field instabilities, we developed a new method of pulse height analysis for particle identification. By analyzing the mean pulse amplitude of each ion from the timing detector, the stored ions with close mass-over-charge ratios but different charge states such as ^(34)Ar and ^(51)Co can be identified, and thus the mass of ^(51)Co can be determined. The charge-resolved IMS may be helpful in the future experiments of isochronous mass measurement even for N = Z nuclei.
基金supported by the National Natural Science Foundation of China(No.10325103)the Chinese Scholarship Council(No.201206010092)
文摘In this paper, the authors are concerned with the forced isochronous oscillators with a repulsive singularity and a bounded nonlinearity x'' + V'(x) + g(x) = e(t, x, x'),where the assumptions on V, g and e are regular, described precisely in the introduction.Using a variant of Moser's twist theorem of invariant curves, the authors show the existence of quasi-periodic solutions and boundedness of all solutions. This extends the result of Liu to the case of the above system where e depends on the velocity.
基金Partially supported by National Natural Science Foundation of China (Grant No. 10771196)the Research Fund of Hunan Provincial Education Department (Grant No. 09A082)Hunan Provincial Natural Science Foundation (Grant No. 10JJ5046)
文摘In this paper, we study the limit cycles bifurcations of four fine focuses in Z4-equivariant vector fields and the problems that its four singular points can be centers and isochronous centers at the same time. By computing the Liapunov constants and periodic constants carefully, we show that for a certain Z4-equivariant quintic systems, there are four fine focuses of five order and five limit cycles can bifurcate from each, we also find conditions of center and isochronous center for this system. The process of proof is algebraic and symbolic by using common computer algebra soft such as Mathematica, the expressions after being simplified in this paper are simple relatively. Moreover, what is worth mentioning is that the result of 20 small limit cycles bifurcating from several fine focuses is good for Z4-equivariant quintic system and the results where multiple singular points become isochronous centers at the same time are less in published references.
基金the National Natural Science Foundation of China (10671179 and 10771196)the Natural Science Foundation of Yunnan Province (2005A0092M)
文摘This paper considers the problems of determining center or focus and isochronous centers for the planar quasi-analytic systems. Two recursive formulas to determine the focal values and period constants are given. The convergence of first integral near the center is proved. Using the general results to quasi-quadratic systems, the problem of the isochronous center of the origin is completely solved.
基金Supported by Science Foundation of Hubei Province Education Department Q20091209National Natural Science Foundation of China (Grant No. 10871206)
文摘In this paper, the definition of generalized isochronous center is given in order to study unitedly real isochronous center and linearizability of polynomial differential systems. An algorithm to compute generalized period constants is obtained, which is a good method to find the necessary conditions of generalized isochronous center for any rational resonance ratio. Its two linear recursive formulas are symbolic and easy to realize with computer algebraic system. The function of time-angle difference is introduced to prove the sufficient conditions. As the application, a class of real cubic Kolmogorov system is investigated and the generalized isochronous center conditions of the origin are obtained.
文摘The Isochronous Mass Spectrometry (IMS) developed at GSI is a very effcient method for direct mass measurements of short-lived nuclides. By taking a recent IMS experiment as an example, the identification procedure of the Time-of-Flight (TOF) spectrum measured in this experiment is discussed.
基金National Basic Research Program of China(973 Program)(2013CB834401)National Natural Science Foundation of China(U1232208,U1432125,11205205,11035007)Western Light Talent Training Program of Chinese Academy Scienus
文摘Recent results and progress of mass measurements of neutron-rich nuclei utilizing Isochronous Mass Spectrometry(IMS) based on the HIRFL-CSR complex at Lanzhou are reported. The nuclei of interest were produced through projectile fragmentation of primary86 Kr ions at a realistic energy of460.65 Me V/u. After in-flight separation by the fragment separator RIBLL2, the fragments were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of their revolution times. The re-determined masses were compared and evaluated with other mass measurements, and the impact of these evaluated masses on the shell evolution study is discussed.