A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
Herein lies a convenient and highly efficient method of olefin isomerization in the presence of RuCl3?3H2O in ionic liquid(IL). More importantly, RuCl3?3H2O is a robust and recyclable catalyst. Nine cycles of RuCl...Herein lies a convenient and highly efficient method of olefin isomerization in the presence of RuCl3?3H2O in ionic liquid(IL). More importantly, RuCl3?3H2O is a robust and recyclable catalyst. Nine cycles of RuCl3?3H2O as the catalyst were performed for the isomerization reactions of the selected substrate in IL and MeOH.展开更多
A model-exchange method based on feature between isomerous CAD systems is put forward in this paper.In this method,CAD model information is accessed at both feature and geometry levels and converted according to stand...A model-exchange method based on feature between isomerous CAD systems is put forward in this paper.In this method,CAD model information is accessed at both feature and geometry levels and converted according to standard feature opera- tion.The feature information including feature tree,dimensions and constraints,which will be lost in traditional data conver- sion,as well as geometry are converted completely from source CAD system to destination one.So the transferred model can be edit- ed through feature operation,which cannot be implemented by general model-exchange interface.展开更多
Two new isomers of HPS3 system, HP(S)S2 and HSSPS, are predicted by means of B3LYP method with 6-311++G(3df,3pd) basis set. The two isomers can isomerize into thermodynamically the most stable species HSPS2, which ha...Two new isomers of HPS3 system, HP(S)S2 and HSSPS, are predicted by means of B3LYP method with 6-311++G(3df,3pd) basis set. The two isomers can isomerize into thermodynamically the most stable species HSPS2, which have been experimentally identified, with relatively higher reaction barriers. In view of their higher thermodynamical and kinetic stability and the experimental observation for HP(O)O2 and HOOPO in previous study, we can reasonably believe that the two species can be spectrosymmetrically characterized in future experiments.展开更多
We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the b...We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the basis functions are customized for the double-H transfer process.The A_(1)' and B_(2)'' vinylidene and delocalization states are obtained.The peaks recently observed in the cryo-SEVI spectra are analyzed,and very good agreement for the energy levels is achieved between theory and experiment.The discrepancies of energy levels between our calculations and recent experimental cryo-SEVI spectra are of similar magnitudes to the experimental error bars,or≤30 cm^(-1) excluding those involving the excitation of the CCH_(2) scissor mode.A kind of special state,called the isomerization state,is revealed and reported,which is characterized by large probability densities in both vinylidene and acetylene regions.In addition,several states dominated by vinylidene character are reported for the first time.The present work would contribute to the understanding of the double-H transfer.展开更多
Ab initio Hartree-Fock theory at the aug-cc-pvtz level is used to investigate the equilibrium structures and isomerization of HSOF system. All of the transition states have been calculated and confirmed by the intri...Ab initio Hartree-Fock theory at the aug-cc-pvtz level is used to investigate the equilibrium structures and isomerization of HSOF system. All of the transition states have been calculated and confirmed by the intrinsic reaction coordinate (IRC). Four equilibrium structures, HSOF, HOSF, SO(H)F and OS(H)F, are predicted in this paper. Though OSF2 has been observed experimentally, the present calculated results suggest that the linear form isomer, HOSF, is more stable than OS(H)F by 35.2 kJ/mol. The linear form HSOF and the branched SO(H)F isomer are more unstable and the computed relative energies are 318.3 and 510.0 kJ/mol, respectively with respect to HOSF isomer corrected with zero point vibrational energy.展开更多
Three new isomers of FCH2CP system, F(H)CCPH (1), F-cCPC-H(H) (2) and F-cCC(H)P-H (3), are predicted by means of B3LYP and CCSD(T) (single-point) methods with 6-311++G(d,p) and 6-311++G(2df,2p) basis sets, respectivel...Three new isomers of FCH2CP system, F(H)CCPH (1), F-cCPC-H(H) (2) and F-cCC(H)P-H (3), are predicted by means of B3LYP and CCSD(T) (single-point) methods with 6-311++G(d,p) and 6-311++G(2df,2p) basis sets, respectively. The three calculated isomers can isomerize into thermodynamically the most stable species F-cPC(H)C-H, which has been suggested in previous theoretical studies, with relatively higher reaction barriers. In view of their higher thermodynamic and kinetic stability, we believe that the three species can be detected in future experiments.展开更多
The [Os(PH3)4H(H2)]+ system was studied using the Gaussian 88 and the energy gradient technique at the restricted Hartree-Fock level under the effective core potential (ECP) approximation. The two different isomers of...The [Os(PH3)4H(H2)]+ system was studied using the Gaussian 88 and the energy gradient technique at the restricted Hartree-Fock level under the effective core potential (ECP) approximation. The two different isomers of complex [Os(PH3)4H (H2)] (cis and trans) were optimized, and several orientations of the hydrogen molecule were considered for the cis isomer. When the hydride is placed in the cis position and oriented suitably, there is a strongly attractive effect between it and the molecular hydrogen.展开更多
This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose...This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.展开更多
To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner...To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner without increase in molecular weight was synthesized.The inter-and intramolecular photosensitized isomerization and the mechanism were studied.展开更多
On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae...On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae to theavailable measured data,parameters are obtained and the systematic behaviour of theisomeric cross section ratio are studied.The isomeric cross section ratio predicted by thepresent work is in good agreement with the limited measured data.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and ...5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.展开更多
Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-hepta...Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.展开更多
Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challen...Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.展开更多
Aim To synthesize trans and cis-3, 4′, 5-trihydroxystilbene by a new convenient route. Methods The reaction of 3, 5-dimethoxybenzaldehyde (3) and 4-methoxy phenylacetonitrile (4) formed the stilbene skeleton. Aft...Aim To synthesize trans and cis-3, 4′, 5-trihydroxystilbene by a new convenient route. Methods The reaction of 3, 5-dimethoxybenzaldehyde (3) and 4-methoxy phenylacetonitrile (4) formed the stilbene skeleton. After hydrolyzation, decarboxylation, and demethylation, we obtained trans-3, 4′, 5-trihydroxystilbene (resveratrol), which can be converted to its cis-isomer by photochemical isomerization. Results Starting from 3 and 4, trans and cis-3, 4′, 5-trihydroxystilbene were synthesized, respectively. Conclusion A facile method for the synthesis of trans and cis-hydroxystilbenes from readily available materials was established.展开更多
Two pairs of structural isomers isolated from Aconitum nagarum var.lasiandrum have been differentiated by ESI MS using hydroxylamine hydrochloride(NH2OH·HCl) derivative method.
Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-...Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).
基金Supported by the National Natural Science Foundation of China(Nos.21072149, 20872108)
文摘Herein lies a convenient and highly efficient method of olefin isomerization in the presence of RuCl3?3H2O in ionic liquid(IL). More importantly, RuCl3?3H2O is a robust and recyclable catalyst. Nine cycles of RuCl3?3H2O as the catalyst were performed for the isomerization reactions of the selected substrate in IL and MeOH.
基金Supported by Science & Technology Sponsoring Project of Ministry of Education(105161)
文摘A model-exchange method based on feature between isomerous CAD systems is put forward in this paper.In this method,CAD model information is accessed at both feature and geometry levels and converted according to standard feature opera- tion.The feature information including feature tree,dimensions and constraints,which will be lost in traditional data conver- sion,as well as geometry are converted completely from source CAD system to destination one.So the transferred model can be edit- ed through feature operation,which cannot be implemented by general model-exchange interface.
基金This work is supported by the National Natural Science Foundation of China(No.20171016,20271019)the Natural Science Foundation of Heilongjiang Province of China(No.E00-16)+1 种基金the Doctoral Start-up Foundation of Heilongjiang University(2002)the Science Foundation for Excellent Youth of Heilongjiang University(J200106).
文摘Two new isomers of HPS3 system, HP(S)S2 and HSSPS, are predicted by means of B3LYP method with 6-311++G(3df,3pd) basis set. The two isomers can isomerize into thermodynamically the most stable species HSPS2, which have been experimentally identified, with relatively higher reaction barriers. In view of their higher thermodynamical and kinetic stability and the experimental observation for HP(O)O2 and HOOPO in previous study, we can reasonably believe that the two species can be spectrosymmetrically characterized in future experiments.
基金supported by the National Natural Science Foundation of China(No.21973098 and No.22133003)the Youth Innovation Promotion Association CAS(No.2018045)the Beijing National Laboratory for Molecular Sciences。
文摘We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the basis functions are customized for the double-H transfer process.The A_(1)' and B_(2)'' vinylidene and delocalization states are obtained.The peaks recently observed in the cryo-SEVI spectra are analyzed,and very good agreement for the energy levels is achieved between theory and experiment.The discrepancies of energy levels between our calculations and recent experimental cryo-SEVI spectra are of similar magnitudes to the experimental error bars,or≤30 cm^(-1) excluding those involving the excitation of the CCH_(2) scissor mode.A kind of special state,called the isomerization state,is revealed and reported,which is characterized by large probability densities in both vinylidene and acetylene regions.In addition,several states dominated by vinylidene character are reported for the first time.The present work would contribute to the understanding of the double-H transfer.
基金The project was supported by the Fujian Provincial Department of Education (JA03020)and the Provincial Administration of Science and Technology of Fujian (2001J018)
文摘Ab initio Hartree-Fock theory at the aug-cc-pvtz level is used to investigate the equilibrium structures and isomerization of HSOF system. All of the transition states have been calculated and confirmed by the intrinsic reaction coordinate (IRC). Four equilibrium structures, HSOF, HOSF, SO(H)F and OS(H)F, are predicted in this paper. Though OSF2 has been observed experimentally, the present calculated results suggest that the linear form isomer, HOSF, is more stable than OS(H)F by 35.2 kJ/mol. The linear form HSOF and the branched SO(H)F isomer are more unstable and the computed relative energies are 318.3 and 510.0 kJ/mol, respectively with respect to HOSF isomer corrected with zero point vibrational energy.
文摘Three new isomers of FCH2CP system, F(H)CCPH (1), F-cCPC-H(H) (2) and F-cCC(H)P-H (3), are predicted by means of B3LYP and CCSD(T) (single-point) methods with 6-311++G(d,p) and 6-311++G(2df,2p) basis sets, respectively. The three calculated isomers can isomerize into thermodynamically the most stable species F-cPC(H)C-H, which has been suggested in previous theoretical studies, with relatively higher reaction barriers. In view of their higher thermodynamic and kinetic stability, we believe that the three species can be detected in future experiments.
文摘The [Os(PH3)4H(H2)]+ system was studied using the Gaussian 88 and the energy gradient technique at the restricted Hartree-Fock level under the effective core potential (ECP) approximation. The two different isomers of complex [Os(PH3)4H (H2)] (cis and trans) were optimized, and several orientations of the hydrogen molecule were considered for the cis isomer. When the hydride is placed in the cis position and oriented suitably, there is a strongly attractive effect between it and the molecular hydrogen.
文摘This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.
文摘To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner without increase in molecular weight was synthesized.The inter-and intramolecular photosensitized isomerization and the mechanism were studied.
文摘On the basis of Hauser-Feshbach theory and some approximations,parametrized formulae of isomeric cross section ratio including two adjustableparameters for(n,t)reaction at 14.6MeV are derived.By fitting these formulae to theavailable measured data,parameters are obtained and the systematic behaviour of theisomeric cross section ratio are studied.The isomeric cross section ratio predicted by thepresent work is in good agreement with the limited measured data.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金support from the National Natural Science Foundation of China(Grant No.22175160)the Science Challenge Project(Grant No.TZ2018004)。
文摘5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.
基金National Natural Science Foundation of China(Grant No.22272129).
文摘Hydroisomerization of n-heptane is an efficient method for producing gasoline with a high octane number.The focus of this study was to find a highly efficient catalyst that could both promote the conversion of n-heptane and inhibit the cracking side reaction.MIL-101(Cr)is a chromium-based metal-organic framework(MOF)with good hydrothermal stability,and exhibits a three-dimensional pore structure that is similar to that of zeolites.Using phosphomolybdic acid(PMA;H3PMo12O40·xH2O)can increase the number of Brønsted acid sites on MIL-101(Cr),which contributes to improving the catalytic performance during isomerization.In this study,0.4%Pt/PMA-MIL-101(Cr)catalyst was successfully crystallized at 220℃using a hydrothermal synthetic method.The results showed that the synthesized samples were mesoporousmicroporous composite materials with the typical octahedral structure,and the MIL-101(Cr)framework was not damaged following modification with PMA.It was found that 0.4%Pt30%PMA-MIL-101(Cr)exhibited the best performance for isomerization of n-heptane,with a conversion rate and selectivity at 260°C of 47.6%and 96.6%,respectively.After five hours of reaction,the conversion rate and selectivity of the catalyst remained above 38%and 80%,respectively.
基金the National Natural Science Foundation of China(2180212552074244)+2 种基金the Central Plains Science and Technology Innovation Leader Project(214200510006)Henan Outstanding Foreign Scientists,Workroom(GZS2018004)and the National Key R&D Program of China(2022YFC2104505)the Program of Henan Center for Oustanding Overseas Scientists(No.GZS2022007)for the financial support.
文摘Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.
文摘Aim To synthesize trans and cis-3, 4′, 5-trihydroxystilbene by a new convenient route. Methods The reaction of 3, 5-dimethoxybenzaldehyde (3) and 4-methoxy phenylacetonitrile (4) formed the stilbene skeleton. After hydrolyzation, decarboxylation, and demethylation, we obtained trans-3, 4′, 5-trihydroxystilbene (resveratrol), which can be converted to its cis-isomer by photochemical isomerization. Results Starting from 3 and 4, trans and cis-3, 4′, 5-trihydroxystilbene were synthesized, respectively. Conclusion A facile method for the synthesis of trans and cis-hydroxystilbenes from readily available materials was established.
文摘Two pairs of structural isomers isolated from Aconitum nagarum var.lasiandrum have been differentiated by ESI MS using hydroxylamine hydrochloride(NH2OH·HCl) derivative method.
基金ACKNOWLEDGMENTS This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).
文摘Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.