The investigation of adsorption and desorption properties of shale are important for estimating reserves and exploitation. The shale samples used in this paper were from the marine shale on Longmaxi shale in Sichuan a...The investigation of adsorption and desorption properties of shale are important for estimating reserves and exploitation. The shale samples used in this paper were from the marine shale on Longmaxi shale in Sichuan and Hubei province, China. A series of analyses, such as organic carbon content test, vitrinite reflectance test, rock pyrolysis, X-ray diffraction, and N2/CO2 adsorption were performed. Gravimetric method with magnetic suspension balance was used to conduct isothermal adsorption and desorption experiments. The Langmuir, Freundlich, Langmuir-Freundlich, D-R, semi-pore, and Tothequations were used to fit the isothermal adsorption and desorption curves. And adsorption potential theory was used to explain the adsorption and desorption process. According to the results, the shale samples have a high level of organic carbon content with the same organic matter type II1 and high degree of maturation. The volume of adsorption increases rapidly and slows down to stable with the pressure increasing. Desorption is the inverse process of adsorption and 10 MPa - 0.5 MPa is the main period of shale gas desorption. The fitting results show that three-parameter isotherm equations are better than the two-parameter ones. The adsorption temperature has a great influence on adsorption volume, little effect on potential energy. Adsorption potential varies under different TOC to affect adsorption properties. Moreover, a large adsorption potential means that the gas molecule is easy to adsorb but difficult to desorb.展开更多
The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion prod...The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion production was tested on single cores and multi-core series by using self-developed shale gas fluid-solid coupling experiment system.The adsorption and desorption laws were summarized and a high pressure isothermal adsorption model was established.The calculation formula of gas content was corrected,and the producing law of adsorption gas was determined.The study results show that the isothermal adsorption law of the shale reservoir under high pressure was different from the conventional low pressure.The high pressure isothermal adsorption curve had the maximum value in excess adsorption with pressure change,and the corresponding pressure was the critical desorption pressure.The high pressure isothermal curve can be used to evaluate the amount of adsorbed gas and the producing degree of adsorption gas.The high pressure isothermal adsorption model can fit and characterize the high pressure isothermal adsorption law of shale.The modified gas content calculation method can evaluate the gas content and the proportion of adsorbed gas more objectively,and is the theoretical basis of reserve assessment and production decline analysis.The producing degree of adsorption gas is closely related to the pressure,only when the reservoir pressure is lower than the critical desorption pressure,the adsorption gas can be produced effectively.In the process of gas well production,the pressure drop in the near-well area is large,the production of adsorption gas is high;away from the wellbore,the adsorption gas is low in production,or no production.展开更多
In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
Background and Aims: Structure and composition of plant roots surfaces are extremely complicated. Water vapor adsorption/desorption isotherm is a powerful tool to characterize such surfaces. The aim of this paper is t...Background and Aims: Structure and composition of plant roots surfaces are extremely complicated. Water vapor adsorption/desorption isotherm is a powerful tool to characterize such surfaces. The aim of this paper is to present theoretical approach for calculating roots surface parameters as adsorption energy, distribution of surface adsorption centers, as well as roots geometric and structure parameters as surface fractal dimension, nanopore sizes and size distributions on example of experimental isotherms of roots of barley taken from the literature. This approach was up to date practically not applied to study plant roots. Methods: Simplest tools of theoretical analysis of adsorption/desorption isotherms are applied. Results: Parameters characterizing energy of water binding, surface complexity and nanopore system of the studied roots were calculated and compared to these of the soils. Some possible applications of root surface parameters to study plant-soil interactions are outlined. Conclusions: Physicochemical surface parameters may be important for characterizing root surface properties, their changes in stress conditions, as well as for study and model plant processes. Physicochemical and geometrical properties of plant roots differ from these of the soils.展开更多
The removal of cobalt ion from aqueous solution by Acacia nilotica leaf carbon(HAN), is described. Effect of p H,agitation time and initial concentration on adsorption capacities of HAN was investigated in a batch mod...The removal of cobalt ion from aqueous solution by Acacia nilotica leaf carbon(HAN), is described. Effect of p H,agitation time and initial concentration on adsorption capacities of HAN was investigated in a batch mode. The adsorption process, which is p H dependent, shows maximum removal of cobalt in the p H range 5 for an initial cobalt concentration of 50 mg·L–1The experimental data have been analyzed by using the Freundlich, Langmuir,Temkin and Dubinin–Radushkevich isotherm models. The batch sorption kinetics have been tested for a pseudofirst order, pseudo-second order and Elovich kinetic models. The rate constants of adsorption for all these kinetic models have been calculated. Results showed that the intraparticle diffusion and initial sorption of Co(Ⅱ) into HAN was the main rate limiting step. The adsorption of cobalt ion was confirmed through instrumental analyses such as scanning electron microscope(SEM) and Fourier transform infrared spectroscopy(FTIR). The desorption and recycling ability of HAN were also found. We conclude that HAN can be used for the efficient removal of cobalt from aqueous solution.展开更多
Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics a...Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics and isotherms pertaining to Longmaxi shale,an experimental setup was designed based on the volumetric method.The objective was to conduct experiments on methane adsorption and desorption kinetics and isotherms before and after clay stabilizer treatments.The experimental data were a good fit for both the intraparticle diffusion model and the Freundlich isotherm model.We analyzed the effect of the clay stabilizer on desorption kinetics and isotherms.Results show that clay stabilizer can obviously improve the diffusion rate constant and reduce the methane adsorption amount.Moreover,we analyzed the desorption efficiency before and after treatment as well as the adsorbed methane content.The results show that a higher desorption efficiency after treatment can be observed when the pressure is higher than 6.84 MPa.Meanwhile,the adsorbed methane content before and after treatment all increase when the pressure decreases,and clay stabilizer can obviously promote the adsorbed methane to free gas when the pressure is lower than 19 MPa.This can also be applied to the optimization formulation of slickwater and the design of gas well production.展开更多
Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4...Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4+ concentration, regardless of soil pH values; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 6.0 were 10.3 and 7.96 mg/g, respectively; the largest adsorp- tion and desorption amounts of NH4+ by purple soil at pH 7.2 were 12.8 and 4.62 mg/g, respectively; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 8.0 were 13.5 and 2.23 mg/g, respectively. The isothermal adsorption ki- netics of NH4+ by purple soils fits the Freundlich equation best (R〉0.95). This study shows that the adsorption of NH4+ by purple soils with different pH values is multi- molecular layer uneven surface adsorption.展开更多
Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management o...Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.展开更多
The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regenerat...The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regeneration of PAN-ACF was also studied.Freundlich and Dubinin-Radushkevich(D-R) adsorption equations can well describe the adsorption isotherm.CT is mainly adsorbed on the exterior surface of PAN-ACF with low boundary layer effect and rate-controlling step of intra-particle diffusion.The adsorption dynamics in the batch reactor well fits with the pseudo-first-order model,and the breakthrough curves in the continuous flow reactor can be well described by the Yoon-Nelson model.The ACF can be recycled through thermal regeneration,whereas the adsorption capacity decreases from 7.87 to 4.98 mg/g after the fourth regeneration.78%-94%of CT can be removed from the wastewater of a fluorine chemical plant on a pilot scale,which confirms the efficacy of ACF under industrial conditions.The results indicate that PAN-ACF is applicable to CT removal from wastewater.展开更多
A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass...A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass concentration, contact time, electrolyte, and temperature. It is found that the adsorption efficiency is high within a wide pH range of 2.5-11.5, and equilibrium is achieved within 180 min. Increases in temperature and electrolyte concentration decrease the adsorption. The adsorption follows the pseudo-second-order kinetic model. The Langmuir isotherm shows better fit than Freundlich isotherm. The maximum uptake capacities calculated from the Langmuir model are 15.82, 15.55 and 15.22 mg/g at 298, 308 and 318 K, respectively. Thermodynamic parameters reveals the spontaneous and exothermic nature of the adsorption. The FTIR study indicates that hydroxyl groups, NH4+ ions and NO3- ions on MKC surface play a key role in Cr(VI) adsorption. The Cr(VI) desorbability of 86.53% is achieved at a Na2CO3 solution. The results show that MKC is suitable as a low-cost adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH close to that where pollutants are usually found in the environment.展开更多
The paper presents a Monte Carlo simulation to study the adsorption characteristics of methane molecule on coal slit pores from different aspects.Firstly,a physical model of adsorption and desorption of methane molecu...The paper presents a Monte Carlo simulation to study the adsorption characteristics of methane molecule on coal slit pores from different aspects.Firstly,a physical model of adsorption and desorption of methane molecules on micropores was established.Secondly,a grand canonical ensemble was introduced as the Monte Carlo simulation system.Thirdly,based on the model and system,the molecule simulation program was developed with VC++6.0 to simulate the isothermal adsorption relationship between the amount of molecule absorption and the factors affecting it.Lastly,the numerically simulated results were compared with measured results of adsorption coal samples of two different coal mines with a laboratory gas absorption instrument.The results show that the molecule simulations of the adsorption constants,the adsorption quantity,and the isothermal adsorption curve at the same and different coal temperatures were in good agreement with those measured in the experiments,indicating that it is feasible to use the established model and the Monte Carlo molecule simulation to study the adsorption characteristics of methane molecules in coal.展开更多
Adsorption equilibrium experiments of phenol on the NKA II resin are separately conducted in the presence and absence of ultrasound at ambient temperature. The isotherm of phenol on the polymer adsorbent in the presen...Adsorption equilibrium experiments of phenol on the NKA II resin are separately conducted in the presence and absence of ultrasound at ambient temperature. The isotherm of phenol on the polymer adsorbent in the presence of ultrasonic field is firstly reported. Results indicated that the isotherm of phenol determined in the presence of ultrasound is lower than that in the absence of ultrasound. In addition, experiments also show that the use of ultrasound to the adsorption system of the phenol aqueous solution and NKA II resin could cause the rising of the temperature of the system in the order of 6 0C. The effect of ultrasound on the isotherm of the phenol on the NKA II resin mostly ascribes to the thermal effect and the non-thermal effect of ultrasonic field, and the role of the later is greater than that of the former.展开更多
Hexavalent uranium(U(VI))can be immobilized by various microbes.The role of extracellular polymeric substances(EPS)in U(VI)immobilization has not been quantified.This work provides a model framework to quantify the co...Hexavalent uranium(U(VI))can be immobilized by various microbes.The role of extracellular polymeric substances(EPS)in U(VI)immobilization has not been quantified.This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI)immobilization:adsorption,bioreduction and desorption.Loosely associated EPS was extracted from a pure bacterial strain,Klebsiella sp.J1,and then exposed to H_(2) and O_(2)(no bioreduction control)to immobilize U(VI)in batch experiments.U(VI)immobilization was faster when exposed to H_(2) than O_(2) and stabilized at 94%for H_(2) and 85%for O_(2),respectively.The non-equilibrium data from the H_(2) experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption(ka=2.87×10^(−3) g EPS·(mg U)^(−1)·min^(−1)),first-order bioreduction(kb=0.112 min−1)and first-order desorption(kd=7.00×10^(−3) min^(−1))and fitted the experimental data with R^(2) of 0.999.While adsorption was dominant in the first minute of the experiments with H_(2),bioreduction was dominant from the second minute to the 50th min.After 50 min,adsorption was negligible,and bioreduction was balanced by desorption.This work also provides the first set of equilibrium data for U(VI)adsorption by EPS alone.The equilibrium experiments with O_(2) were well simulated by both the Langmuir isotherm and the Freundlich isotherm,suggesting multiple mechanisms involved in the interactions between U(VI)and EPS.The thermodynamic study indicated that the adsorption of U(VI)onto EPS was endothermic,spontaneous and favorable at higher temperatures.展开更多
A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions.A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases wa...A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions.A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases was used as isotherm equation which can even be applied for multi-pollutants scenarios.The developed model is then validated using collected experimental data of heavy metal ions(Pb,Cu,Cd,Zn,and Ni).Comparisons were made for a number of isotherm and kinetic models to examine the performance of the proposed model.The developed model revealed desirable accuracy and superiority over other models in predicting the adsorption behavior and can be used for other systems of concern.The model correlates the adsorption kinetic with an R2 value of 0.9391 and desorption kinetic with an R2 value of 0.9383.By application of the proposed model to any available adsorption datasets,the individual characteristics of adsorption and desorption can be determined.展开更多
文摘The investigation of adsorption and desorption properties of shale are important for estimating reserves and exploitation. The shale samples used in this paper were from the marine shale on Longmaxi shale in Sichuan and Hubei province, China. A series of analyses, such as organic carbon content test, vitrinite reflectance test, rock pyrolysis, X-ray diffraction, and N2/CO2 adsorption were performed. Gravimetric method with magnetic suspension balance was used to conduct isothermal adsorption and desorption experiments. The Langmuir, Freundlich, Langmuir-Freundlich, D-R, semi-pore, and Tothequations were used to fit the isothermal adsorption and desorption curves. And adsorption potential theory was used to explain the adsorption and desorption process. According to the results, the shale samples have a high level of organic carbon content with the same organic matter type II1 and high degree of maturation. The volume of adsorption increases rapidly and slows down to stable with the pressure increasing. Desorption is the inverse process of adsorption and 10 MPa - 0.5 MPa is the main period of shale gas desorption. The fitting results show that three-parameter isotherm equations are better than the two-parameter ones. The adsorption temperature has a great influence on adsorption volume, little effect on potential energy. Adsorption potential varies under different TOC to affect adsorption properties. Moreover, a large adsorption potential means that the gas molecule is easy to adsorb but difficult to desorb.
基金Supported by China National Science and Technology Major Project(2017ZX05037-001)the "13th Five-Year Plan" National Demonstration Project(2016ZX05062-002-001)
文摘The high pressure static adsorption curves of shale samples from Silurian Changning-Weiyuan Longmaxi Formation were tested by using high pressure isothermal adsorption equipment.The physical modeling of depletion production was tested on single cores and multi-core series by using self-developed shale gas fluid-solid coupling experiment system.The adsorption and desorption laws were summarized and a high pressure isothermal adsorption model was established.The calculation formula of gas content was corrected,and the producing law of adsorption gas was determined.The study results show that the isothermal adsorption law of the shale reservoir under high pressure was different from the conventional low pressure.The high pressure isothermal adsorption curve had the maximum value in excess adsorption with pressure change,and the corresponding pressure was the critical desorption pressure.The high pressure isothermal curve can be used to evaluate the amount of adsorbed gas and the producing degree of adsorption gas.The high pressure isothermal adsorption model can fit and characterize the high pressure isothermal adsorption law of shale.The modified gas content calculation method can evaluate the gas content and the proportion of adsorbed gas more objectively,and is the theoretical basis of reserve assessment and production decline analysis.The producing degree of adsorption gas is closely related to the pressure,only when the reservoir pressure is lower than the critical desorption pressure,the adsorption gas can be produced effectively.In the process of gas well production,the pressure drop in the near-well area is large,the production of adsorption gas is high;away from the wellbore,the adsorption gas is low in production,or no production.
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.
文摘Background and Aims: Structure and composition of plant roots surfaces are extremely complicated. Water vapor adsorption/desorption isotherm is a powerful tool to characterize such surfaces. The aim of this paper is to present theoretical approach for calculating roots surface parameters as adsorption energy, distribution of surface adsorption centers, as well as roots geometric and structure parameters as surface fractal dimension, nanopore sizes and size distributions on example of experimental isotherms of roots of barley taken from the literature. This approach was up to date practically not applied to study plant roots. Methods: Simplest tools of theoretical analysis of adsorption/desorption isotherms are applied. Results: Parameters characterizing energy of water binding, surface complexity and nanopore system of the studied roots were calculated and compared to these of the soils. Some possible applications of root surface parameters to study plant-soil interactions are outlined. Conclusions: Physicochemical surface parameters may be important for characterizing root surface properties, their changes in stress conditions, as well as for study and model plant processes. Physicochemical and geometrical properties of plant roots differ from these of the soils.
文摘The removal of cobalt ion from aqueous solution by Acacia nilotica leaf carbon(HAN), is described. Effect of p H,agitation time and initial concentration on adsorption capacities of HAN was investigated in a batch mode. The adsorption process, which is p H dependent, shows maximum removal of cobalt in the p H range 5 for an initial cobalt concentration of 50 mg·L–1The experimental data have been analyzed by using the Freundlich, Langmuir,Temkin and Dubinin–Radushkevich isotherm models. The batch sorption kinetics have been tested for a pseudofirst order, pseudo-second order and Elovich kinetic models. The rate constants of adsorption for all these kinetic models have been calculated. Results showed that the intraparticle diffusion and initial sorption of Co(Ⅱ) into HAN was the main rate limiting step. The adsorption of cobalt ion was confirmed through instrumental analyses such as scanning electron microscope(SEM) and Fourier transform infrared spectroscopy(FTIR). The desorption and recycling ability of HAN were also found. We conclude that HAN can be used for the efficient removal of cobalt from aqueous solution.
基金supported by the China Scholarship Council(No.201908505143)the Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2017jcyj AX0290/No.cstc2018jcyj AX0563)。
文摘Knowing methane desorption characteristics is essential to define the contribution of adsorbed gas to gas well production.To evaluate the synthetic effect of a clay stabilizer solution on methane desorption kinetics and isotherms pertaining to Longmaxi shale,an experimental setup was designed based on the volumetric method.The objective was to conduct experiments on methane adsorption and desorption kinetics and isotherms before and after clay stabilizer treatments.The experimental data were a good fit for both the intraparticle diffusion model and the Freundlich isotherm model.We analyzed the effect of the clay stabilizer on desorption kinetics and isotherms.Results show that clay stabilizer can obviously improve the diffusion rate constant and reduce the methane adsorption amount.Moreover,we analyzed the desorption efficiency before and after treatment as well as the adsorbed methane content.The results show that a higher desorption efficiency after treatment can be observed when the pressure is higher than 6.84 MPa.Meanwhile,the adsorbed methane content before and after treatment all increase when the pressure decreases,and clay stabilizer can obviously promote the adsorbed methane to free gas when the pressure is lower than 19 MPa.This can also be applied to the optimization formulation of slickwater and the design of gas well production.
基金Supported by National Natural Science Foundation of China(41271267)National Key Technology Research and Development Program(2013BAJ11B03)Special Scientific Research Fund of Environment Friendly Public Welfare Profession of China(2013467036)~~
文摘Ammonium adsorption and desorption properties by purple soils with dif- ferent pH were studied. The results showed that the adsorption and desorption amounts of NH4+ by purple soils increased with the increase of NH4+ concentration, regardless of soil pH values; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 6.0 were 10.3 and 7.96 mg/g, respectively; the largest adsorp- tion and desorption amounts of NH4+ by purple soil at pH 7.2 were 12.8 and 4.62 mg/g, respectively; the largest adsorption and desorption amounts of NH4+ by purple soil at pH 8.0 were 13.5 and 2.23 mg/g, respectively. The isothermal adsorption ki- netics of NH4+ by purple soils fits the Freundlich equation best (R〉0.95). This study shows that the adsorption of NH4+ by purple soils with different pH values is multi- molecular layer uneven surface adsorption.
基金supported by National KeyBasic Research Program of China (Grant No. 2009CB219605)Key Project of National Natural Science Foundation of China (Grant No.40730422)Grand Science and Technology Special Project of China(Grant No. 2011ZX05034-04)
文摘Quantitative description of desorption stages of coalbed methane is an important basis to objectively understand the production of coalbed methane well,to diagnose the production state,and to optimize the management of draining and collection of coalbed methane.A series of isothermal adsorption experiments were carried out with 12 anthracite samples from 6 coalbed methane wells located in the south of the Qinshui Basin,based on the results of isothermal adsorption experiments,and an analytical model was developed based on the Langmuir sorption theory.With the model,a numerical method that adopts equivalent desorption rate and its curve was established,which can be used to characterize the staged desorption of coalbed methane.According to the experimental and numerical characterizations,three key pressure points determined by the equivalent desorption rate curvature that defines pressure-declining desorption stage,have been proposed and confirmed,namely,start-up pressure,transition pressure and sensitive pressure.By using these three key pressure points,the process of coalbed methane desorption associated with isothermal adsorption experiments can be divided into four stages,i.e.,zero desorption stage,slow desorption stage,transition desorption stage,and sensitive desorption stage.According to analogy analysis,there are differences and similarities between the processes of coalbed methane desorption identified by isothermal adsorption experiments and observed in gas production.Moreover,it has been found that larger Langmuir volume and ratio of Langmuir constants are beneficial to earlier advent of steady production stage,whereas it is also possible that the declining production stage may occur ahead of schedule.
基金Project(2004C33068) supported by the Science and Technology Programs of Zhejiang Province,ChinaProject(20100933B17) supported by the Social Development and Science Research Program of Hangzhou,China
文摘The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regeneration of PAN-ACF was also studied.Freundlich and Dubinin-Radushkevich(D-R) adsorption equations can well describe the adsorption isotherm.CT is mainly adsorbed on the exterior surface of PAN-ACF with low boundary layer effect and rate-controlling step of intra-particle diffusion.The adsorption dynamics in the batch reactor well fits with the pseudo-first-order model,and the breakthrough curves in the continuous flow reactor can be well described by the Yoon-Nelson model.The ACF can be recycled through thermal regeneration,whereas the adsorption capacity decreases from 7.87 to 4.98 mg/g after the fourth regeneration.78%-94%of CT can be removed from the wastewater of a fluorine chemical plant on a pilot scale,which confirms the efficacy of ACF under industrial conditions.The results indicate that PAN-ACF is applicable to CT removal from wastewater.
基金Project(2012BAJ24B03)supported by the National Science and Technology Support Program of China
文摘A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass concentration, contact time, electrolyte, and temperature. It is found that the adsorption efficiency is high within a wide pH range of 2.5-11.5, and equilibrium is achieved within 180 min. Increases in temperature and electrolyte concentration decrease the adsorption. The adsorption follows the pseudo-second-order kinetic model. The Langmuir isotherm shows better fit than Freundlich isotherm. The maximum uptake capacities calculated from the Langmuir model are 15.82, 15.55 and 15.22 mg/g at 298, 308 and 318 K, respectively. Thermodynamic parameters reveals the spontaneous and exothermic nature of the adsorption. The FTIR study indicates that hydroxyl groups, NH4+ ions and NO3- ions on MKC surface play a key role in Cr(VI) adsorption. The Cr(VI) desorbability of 86.53% is achieved at a Na2CO3 solution. The results show that MKC is suitable as a low-cost adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH close to that where pollutants are usually found in the environment.
基金supported by the Industrial Research Project in Guizhou Science and Technology Bureau of China (GY(2011)No.3012)International Cooperation Projects in Guizhou Science and Technology Bureau of China (G(2009)No.700111)
文摘The paper presents a Monte Carlo simulation to study the adsorption characteristics of methane molecule on coal slit pores from different aspects.Firstly,a physical model of adsorption and desorption of methane molecules on micropores was established.Secondly,a grand canonical ensemble was introduced as the Monte Carlo simulation system.Thirdly,based on the model and system,the molecule simulation program was developed with VC++6.0 to simulate the isothermal adsorption relationship between the amount of molecule absorption and the factors affecting it.Lastly,the numerically simulated results were compared with measured results of adsorption coal samples of two different coal mines with a laboratory gas absorption instrument.The results show that the molecule simulations of the adsorption constants,the adsorption quantity,and the isothermal adsorption curve at the same and different coal temperatures were in good agreement with those measured in the experiments,indicating that it is feasible to use the established model and the Monte Carlo molecule simulation to study the adsorption characteristics of methane molecules in coal.
基金The National Natural Science Foundation of China (No. 29936100), and the Natural Science Foundation of Guangdong Province.
文摘Adsorption equilibrium experiments of phenol on the NKA II resin are separately conducted in the presence and absence of ultrasound at ambient temperature. The isotherm of phenol on the polymer adsorbent in the presence of ultrasonic field is firstly reported. Results indicated that the isotherm of phenol determined in the presence of ultrasound is lower than that in the absence of ultrasound. In addition, experiments also show that the use of ultrasound to the adsorption system of the phenol aqueous solution and NKA II resin could cause the rising of the temperature of the system in the order of 6 0C. The effect of ultrasound on the isotherm of the phenol on the NKA II resin mostly ascribes to the thermal effect and the non-thermal effect of ultrasonic field, and the role of the later is greater than that of the former.
文摘Hexavalent uranium(U(VI))can be immobilized by various microbes.The role of extracellular polymeric substances(EPS)in U(VI)immobilization has not been quantified.This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI)immobilization:adsorption,bioreduction and desorption.Loosely associated EPS was extracted from a pure bacterial strain,Klebsiella sp.J1,and then exposed to H_(2) and O_(2)(no bioreduction control)to immobilize U(VI)in batch experiments.U(VI)immobilization was faster when exposed to H_(2) than O_(2) and stabilized at 94%for H_(2) and 85%for O_(2),respectively.The non-equilibrium data from the H_(2) experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption(ka=2.87×10^(−3) g EPS·(mg U)^(−1)·min^(−1)),first-order bioreduction(kb=0.112 min−1)and first-order desorption(kd=7.00×10^(−3) min^(−1))and fitted the experimental data with R^(2) of 0.999.While adsorption was dominant in the first minute of the experiments with H_(2),bioreduction was dominant from the second minute to the 50th min.After 50 min,adsorption was negligible,and bioreduction was balanced by desorption.This work also provides the first set of equilibrium data for U(VI)adsorption by EPS alone.The equilibrium experiments with O_(2) were well simulated by both the Langmuir isotherm and the Freundlich isotherm,suggesting multiple mechanisms involved in the interactions between U(VI)and EPS.The thermodynamic study indicated that the adsorption of U(VI)onto EPS was endothermic,spontaneous and favorable at higher temperatures.
文摘A coupled adsorption–desorption thermo-kinetic model is developed incorporating both adsorption and desorption reactions.A local pseudo-equilibrium condition at the interface of adsorbent and adsorbate bulk phases was used as isotherm equation which can even be applied for multi-pollutants scenarios.The developed model is then validated using collected experimental data of heavy metal ions(Pb,Cu,Cd,Zn,and Ni).Comparisons were made for a number of isotherm and kinetic models to examine the performance of the proposed model.The developed model revealed desirable accuracy and superiority over other models in predicting the adsorption behavior and can be used for other systems of concern.The model correlates the adsorption kinetic with an R2 value of 0.9391 and desorption kinetic with an R2 value of 0.9383.By application of the proposed model to any available adsorption datasets,the individual characteristics of adsorption and desorption can be determined.