This paper reported an effectiveness of pre-cold rolling-induced{332}/113[twins combined with subsequent isothermal x-phase formation for enhancement of uniform elongation in a b-type Ti–15Mo alloy with high yield s...This paper reported an effectiveness of pre-cold rolling-induced{332}/113[twins combined with subsequent isothermal x-phase formation for enhancement of uniform elongation in a b-type Ti–15Mo alloy with high yield strength level.Mechanical{332}/113[twins were induced by cold rolling with an thickness reduction of 5%,which had little effect on x-phase precipitation after aging at 573 K for 3.6 ks.Twinning after the cold rolling was further activated during tensile deformation,even with the presence of isothermal x-phase.This combination of twins and x-phase enhanced uniform elongation from 0 to 9%at yield strength level of 890 MPa.The high yield strength was mainly dominated by dislocation slip due to the isothermal x-phase formation,and early onset of plastic instability after yielding was hindered due to the pre-cold rolling-induced twins.Dynamic microstructural refinement was induced by further twinning activation during deformation,which resulted in high work hardening rate corresponding enhancement of uniform elongation.展开更多
Using the similar compositions of the Ti-microalloyed high-strength steels produced by the thin-slab casting process of compact strip production(CSP),four thermo-mechanical control processes(TMCP)after the simulat...Using the similar compositions of the Ti-microalloyed high-strength steels produced by the thin-slab casting process of compact strip production(CSP),four thermo-mechanical control processes(TMCP)after the simulated thickslab casting,i.e.the two hot rolling routes and the two cooling processes,were designed,aiming at achieving the same mechanical properties as the thin strip products.The final microstructures after the four TMCP processes were examined by optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM).The tensile properties and Charpy impact energy were measured correspondingly.Strain-induced TiC precipitation was found in the two-stage rolling route with the finish rolling temperature at low levels,leading to grain refinement due to the pinning effect during austenite recrystallization.Precipitation hardening in ferrite was observed when a period of isothermal holding was applied after hot rolling.It could be concluded that both finish rolling temperature and the subsequent isothermal holding temperature were crucial for the achieved strength level due to the combined effect of grain refinement and precipitation hardening.At the same time,it was found that the isothermal holding led to poor impact toughness because of remarkable precipitation hardening.Therefore,it was suggested that the precipitation kinetics of titanium carbides in both austenite and ferrite should be investigated in future.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 51471040)
文摘This paper reported an effectiveness of pre-cold rolling-induced{332}/113[twins combined with subsequent isothermal x-phase formation for enhancement of uniform elongation in a b-type Ti–15Mo alloy with high yield strength level.Mechanical{332}/113[twins were induced by cold rolling with an thickness reduction of 5%,which had little effect on x-phase precipitation after aging at 573 K for 3.6 ks.Twinning after the cold rolling was further activated during tensile deformation,even with the presence of isothermal x-phase.This combination of twins and x-phase enhanced uniform elongation from 0 to 9%at yield strength level of 890 MPa.The high yield strength was mainly dominated by dislocation slip due to the isothermal x-phase formation,and early onset of plastic instability after yielding was hindered due to the pre-cold rolling-induced twins.Dynamic microstructural refinement was induced by further twinning activation during deformation,which resulted in high work hardening rate corresponding enhancement of uniform elongation.
文摘Using the similar compositions of the Ti-microalloyed high-strength steels produced by the thin-slab casting process of compact strip production(CSP),four thermo-mechanical control processes(TMCP)after the simulated thickslab casting,i.e.the two hot rolling routes and the two cooling processes,were designed,aiming at achieving the same mechanical properties as the thin strip products.The final microstructures after the four TMCP processes were examined by optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM).The tensile properties and Charpy impact energy were measured correspondingly.Strain-induced TiC precipitation was found in the two-stage rolling route with the finish rolling temperature at low levels,leading to grain refinement due to the pinning effect during austenite recrystallization.Precipitation hardening in ferrite was observed when a period of isothermal holding was applied after hot rolling.It could be concluded that both finish rolling temperature and the subsequent isothermal holding temperature were crucial for the achieved strength level due to the combined effect of grain refinement and precipitation hardening.At the same time,it was found that the isothermal holding led to poor impact toughness because of remarkable precipitation hardening.Therefore,it was suggested that the precipitation kinetics of titanium carbides in both austenite and ferrite should be investigated in future.