1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydroge...1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydrogen and oxygen展开更多
Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ...Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.展开更多
Late Mesoproterozoic igneous rocks in the SW Yangtze Block are important for understanding the role of it in reconstruction of the Rodinia supercontinent.In the present study,we report new geochronological,geochemical...Late Mesoproterozoic igneous rocks in the SW Yangtze Block are important for understanding the role of it in reconstruction of the Rodinia supercontinent.In the present study,we report new geochronological,geochemical,and Nd-Hf isotopic data for the Cuoke plagioclase amphibolites and granites in the SW Yangtze Block.Geochronological results show that the plagioclase amphibolites and granites have similar late Mesoproterozoic zircon U-Pb ages of 1168-1162 Ma,constituting a bimodal igneous assemblage.The plagioclase amphibolites have high and variable TiO2 contents(1.15-4.30 wt.%)and Mg#(34-66)values,similar to the tholeiitic series.They are characterized by enrichment in LREEs and LILEs,and have OIB-like affinities with positive Nb and Ta anomalies.The plagioclase amphibolites have positive whole-rockεNd(t)(+3.2 to+4.3)and zirconεHf(t)(+4.3 to+10.7)values,indicating that they were derived from an OIB-like asthenospheric mantle source.The granites belong to the reduced peralkaline A-type series and have negativeεNd(t)value of-6.0 andεHf(t)values of-5.8 to-13.8,indicating a derivation from the partial melting of ancient mafic lower crust.In combination with the~1.05-1.02 Ga bimodal igneous assemblage in the SW Yangtze Block,we propose that the Cuoke 1168-1162 Ma igneous rocks were likely formed in a continental rift basin and argue against the existance of Grenvillian Orogen in the SW Yangtze Block during the late Mesoproterozoic.展开更多
In mid-September 2013, PM2.5 samples were collected at six sites in Nanchang, Jiangxi Province, China, to quantify nine water-soluble ions (Ca2+, Mg2+, K+, Na+, NH4+, SO42-, Cl-, F , NO3 ), 29 trace elements (...In mid-September 2013, PM2.5 samples were collected at six sites in Nanchang, Jiangxi Province, China, to quantify nine water-soluble ions (Ca2+, Mg2+, K+, Na+, NH4+, SO42-, Cl-, F , NO3 ), 29 trace elements (Ba, Zn, Pb, Ni, Mo, Cr, Cu, Sr, Sb, Rb, Cd, Bi, Zr, V, Ga, Li, Y, Nb, W, Cs, Tl, Sc, Co, U, Hf, In, Re, Be, and Ta), and to characterize Pb isotopic ratios (^207pb/^206pb, ^208pb/^206pb, and ^207pb/^204pb) for identifying the main source(s) of Pb. The results showed that the average daily PM2.5 concentration (53.16 ± 24.17) Dg/m3 was within the secondary level of the Chinese ambient air quality standard. The combined concentrations of SO42-, NH4+, and NO3- to total measured water-soluble ion concentrations in PM2.5 ranged from 79.40% to 95.18%, indicating that anthropogenic sources were significant. Coal combustion and vehicle emissions were both contributors to PM2.5 based on the NO3-/SO4^2- ratios. Wushu School experienced the lowest concentrations of PM2.s and most trace elements among the six sampling sites. Enrichment factor results showed that TI, Cr, In, Cu, Zn, Pb, Bi, Ni, Sb, and Cd in PM2.5 were affected by anthropogenic activities. Cluster analysis suggested that Cd, Sb, Pb, Re, Zn, Bi, Cs, Tl, Ga, and In were possibly related to coal combustion and vehicle exhaust, while Ni, Nb, Cr, and Mo may have originated from metal smelting. Pb isotopic tracing showed that coal dust, cement dust, road dust and construction dust were the major Pb sources in PM2.5 in Nanchang. Combined, these sources contributed an average of 72.51% of the Pb measured, while vehicle exhaust accounted for 27.49% of Pb based on results from a binary Pb isotope mixed model,展开更多
The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Hima...The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Himalaya orogenic episode. The geochronological study on the buried Shuangmaidi granite has confirmed the existence of the Cenozoic granitoids in the Baoshan Block. The present study indicates that: (1) It is medium- to coarse-grained two mica phyric granite, characterized by high SiO2 (73.55%-77.16%) and low CaO (0.34%-1.38%) contents, with a total alkalis (K2O+Na2O) of 5.22%-8.03%, K2O/Na2O ratios of 0.24-1.79, and total rare earth elements (ZREE) of the granite between 85 and 125 ppb. All samples are enriched in light REE and exhibit medium negative Eu anomalies; and they show pronounced negative anomalies in Ba, Sr, Ti, and Nb but significant positive anomalies in K, Rb, U, Th, and Pb on mantle-normalized trace element patterns, indicating typi-cally peraluminous to strongly peraluminous S-type granite. (2) The zircon SHRIMP U-Pb ages of the granite are 36.27±0.48 Ma for the samples from ZK7-1 and 35.78±0.49 Ma for those from ZK0-1, respectively. The similar zircon ages from these two drill cores may suggest that the granite samples come from the same buried pluton. (3) 206pb/204pb values of the granite vary from 20.115 to 25.359, 207pb/204pb from 15.776 to 16.160, and 208pb/204pb from 39.236 to 41.285, showing the characteristics of radio- active lead anomaly of the upper crust. The (87Sr/86Sr)i values calculated on the average age of the two-mica orthoclase granite (36 Ma) range from 0.72524 to 0.77503 and eNd(t) values vary from -10.9 to -11.7. These data, along with the depleted-mantle Nd modal ages of 1.73-1.80 Ga, imply that the granites might have formed from partial melting of the Precambrian crystal basements. (4) On the Hf-Rb-Ta diagram, almost all the samples fall within the field of post-collision tectonic setting. The CaO/Na2O and A1203/TiO2 ratios suggest that the granitic magma may have formed from partial melting of clay-rich crustal materials with a pos- sible melting temperature of about 900℃ and a possible crystallization temperature of 775-795~C. (5) During the post-collision of the Himalaya orogen, with the southeastward extrusion of the Indochina continent resulting from the continuous northward indentation of the India continent into the Asia, the Gaoligong Fault, as the western boundary of the Indochina continent, moved in the dextral strike-slip on a large scale to trigger partial melting of the thickened crust, and the peraluminous granitic magma from which the Shuangmaidi two-mica orthoclase granite derived was formed.展开更多
Three types of macromolecular organic matters (MOMs), i.e. humic acid (HA), kerogen+black carbon (KB), and black carbon (BC) were extracted from marine sediments of Xiamen Gulf, southeast of China. The chemic...Three types of macromolecular organic matters (MOMs), i.e. humic acid (HA), kerogen+black carbon (KB), and black carbon (BC) were extracted from marine sediments of Xiamen Gulf, southeast of China. The chemical composition, morphological property and source of the three extractions were characterized by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) and scanning electron microscope (SEM). The results showed that KB was the predominant fraction in MOMs, which accounted for 61.79%-89.15% of the total organic content (TOC), while HA consisted less than 5%. The relative high contents of kerogen and BC, and low contents of HA in the samples indicated that anthropogenic input might be the major source of organic matter in marine sediments near the industrial regions. The characterization of SEM, not only revealed morphological properties of the three fractions, but also allowed a better understanding of the source of MOMs. The δ 13 C values of the three fractions suggested that materials from terrestrial C 3 plants were predominant. Furthermore, the anthropogenic activities, such as the discharge of sewage, coal and biomass combustion from industry nearby and agricultural practices within drainage basin of the Jiulong River, were remarkably contributed to the variations in δ 13 C values of MOMs in the offshore marine sediments.展开更多
基金supported by grants from the National Program on Key Basic Research Project of China (973 Program, 2011CB403004)
文摘1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydrogen and oxygen
基金The National Science and Technology Major Project under contract No.2011ZX05025-002-03the Project of China National Offshore Oil Corporation(CNOOC)Limited under contract No.CCL2013ZJFNO729the National Natural Science Foundation of China under contract No.41530963.
文摘Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2019B1515120019,2018B030312007)National Natural Science Foundation of China(Grant Nos.U1701641,41830211,41702230)the District Summary and Service Product Develop of Yunnan Region Geologic Survey,China(Grant No.121201102000150012-02)。
文摘Late Mesoproterozoic igneous rocks in the SW Yangtze Block are important for understanding the role of it in reconstruction of the Rodinia supercontinent.In the present study,we report new geochronological,geochemical,and Nd-Hf isotopic data for the Cuoke plagioclase amphibolites and granites in the SW Yangtze Block.Geochronological results show that the plagioclase amphibolites and granites have similar late Mesoproterozoic zircon U-Pb ages of 1168-1162 Ma,constituting a bimodal igneous assemblage.The plagioclase amphibolites have high and variable TiO2 contents(1.15-4.30 wt.%)and Mg#(34-66)values,similar to the tholeiitic series.They are characterized by enrichment in LREEs and LILEs,and have OIB-like affinities with positive Nb and Ta anomalies.The plagioclase amphibolites have positive whole-rockεNd(t)(+3.2 to+4.3)and zirconεHf(t)(+4.3 to+10.7)values,indicating that they were derived from an OIB-like asthenospheric mantle source.The granites belong to the reduced peralkaline A-type series and have negativeεNd(t)value of-6.0 andεHf(t)values of-5.8 to-13.8,indicating a derivation from the partial melting of ancient mafic lower crust.In combination with the~1.05-1.02 Ga bimodal igneous assemblage in the SW Yangtze Block,we propose that the Cuoke 1168-1162 Ma igneous rocks were likely formed in a continental rift basin and argue against the existance of Grenvillian Orogen in the SW Yangtze Block during the late Mesoproterozoic.
基金This work was supported by the National Natural Science Foun- dation of China (21377042, 21477042) and the Natural Science Foundation of Fujian Province (2016 J01065). The authors express their heartfelt thanks to the colleagues who participated in the sampiing work. Mr. James Ing, a native English speaker from the UK is gratefully acknowledged for reviewing this paper prior to resub- mission. We thank the anonymous reviewers for their constructive comments.
文摘In mid-September 2013, PM2.5 samples were collected at six sites in Nanchang, Jiangxi Province, China, to quantify nine water-soluble ions (Ca2+, Mg2+, K+, Na+, NH4+, SO42-, Cl-, F , NO3 ), 29 trace elements (Ba, Zn, Pb, Ni, Mo, Cr, Cu, Sr, Sb, Rb, Cd, Bi, Zr, V, Ga, Li, Y, Nb, W, Cs, Tl, Sc, Co, U, Hf, In, Re, Be, and Ta), and to characterize Pb isotopic ratios (^207pb/^206pb, ^208pb/^206pb, and ^207pb/^204pb) for identifying the main source(s) of Pb. The results showed that the average daily PM2.5 concentration (53.16 ± 24.17) Dg/m3 was within the secondary level of the Chinese ambient air quality standard. The combined concentrations of SO42-, NH4+, and NO3- to total measured water-soluble ion concentrations in PM2.5 ranged from 79.40% to 95.18%, indicating that anthropogenic sources were significant. Coal combustion and vehicle emissions were both contributors to PM2.5 based on the NO3-/SO4^2- ratios. Wushu School experienced the lowest concentrations of PM2.s and most trace elements among the six sampling sites. Enrichment factor results showed that TI, Cr, In, Cu, Zn, Pb, Bi, Ni, Sb, and Cd in PM2.5 were affected by anthropogenic activities. Cluster analysis suggested that Cd, Sb, Pb, Re, Zn, Bi, Cs, Tl, Ga, and In were possibly related to coal combustion and vehicle exhaust, while Ni, Nb, Cr, and Mo may have originated from metal smelting. Pb isotopic tracing showed that coal dust, cement dust, road dust and construction dust were the major Pb sources in PM2.5 in Nanchang. Combined, these sources contributed an average of 72.51% of the Pb measured, while vehicle exhaust accounted for 27.49% of Pb based on results from a binary Pb isotope mixed model,
基金supported by National Natural Science Foundation of China (GrantNos. 40772197,40972232)National High-Tech Research & Development (Grant No. 2006BAB01A03)National Support Program of Science & Technology (Grant Nos. 2006BAB01A01,2006BAB01A03)
文摘The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Himalaya orogenic episode. The geochronological study on the buried Shuangmaidi granite has confirmed the existence of the Cenozoic granitoids in the Baoshan Block. The present study indicates that: (1) It is medium- to coarse-grained two mica phyric granite, characterized by high SiO2 (73.55%-77.16%) and low CaO (0.34%-1.38%) contents, with a total alkalis (K2O+Na2O) of 5.22%-8.03%, K2O/Na2O ratios of 0.24-1.79, and total rare earth elements (ZREE) of the granite between 85 and 125 ppb. All samples are enriched in light REE and exhibit medium negative Eu anomalies; and they show pronounced negative anomalies in Ba, Sr, Ti, and Nb but significant positive anomalies in K, Rb, U, Th, and Pb on mantle-normalized trace element patterns, indicating typi-cally peraluminous to strongly peraluminous S-type granite. (2) The zircon SHRIMP U-Pb ages of the granite are 36.27±0.48 Ma for the samples from ZK7-1 and 35.78±0.49 Ma for those from ZK0-1, respectively. The similar zircon ages from these two drill cores may suggest that the granite samples come from the same buried pluton. (3) 206pb/204pb values of the granite vary from 20.115 to 25.359, 207pb/204pb from 15.776 to 16.160, and 208pb/204pb from 39.236 to 41.285, showing the characteristics of radio- active lead anomaly of the upper crust. The (87Sr/86Sr)i values calculated on the average age of the two-mica orthoclase granite (36 Ma) range from 0.72524 to 0.77503 and eNd(t) values vary from -10.9 to -11.7. These data, along with the depleted-mantle Nd modal ages of 1.73-1.80 Ga, imply that the granites might have formed from partial melting of the Precambrian crystal basements. (4) On the Hf-Rb-Ta diagram, almost all the samples fall within the field of post-collision tectonic setting. The CaO/Na2O and A1203/TiO2 ratios suggest that the granitic magma may have formed from partial melting of clay-rich crustal materials with a pos- sible melting temperature of about 900℃ and a possible crystallization temperature of 775-795~C. (5) During the post-collision of the Himalaya orogen, with the southeastward extrusion of the Indochina continent resulting from the continuous northward indentation of the India continent into the Asia, the Gaoligong Fault, as the western boundary of the Indochina continent, moved in the dextral strike-slip on a large scale to trigger partial melting of the thickened crust, and the peraluminous granitic magma from which the Shuangmaidi two-mica orthoclase granite derived was formed.
基金supported by the National Natural Science Foundation of China (No.41005082)the Visiting Fellowships of State Key Laboratory of Marine Environmental Science (Xiamen University) (No.MELRS1017)
文摘Three types of macromolecular organic matters (MOMs), i.e. humic acid (HA), kerogen+black carbon (KB), and black carbon (BC) were extracted from marine sediments of Xiamen Gulf, southeast of China. The chemical composition, morphological property and source of the three extractions were characterized by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) and scanning electron microscope (SEM). The results showed that KB was the predominant fraction in MOMs, which accounted for 61.79%-89.15% of the total organic content (TOC), while HA consisted less than 5%. The relative high contents of kerogen and BC, and low contents of HA in the samples indicated that anthropogenic input might be the major source of organic matter in marine sediments near the industrial regions. The characterization of SEM, not only revealed morphological properties of the three fractions, but also allowed a better understanding of the source of MOMs. The δ 13 C values of the three fractions suggested that materials from terrestrial C 3 plants were predominant. Furthermore, the anthropogenic activities, such as the discharge of sewage, coal and biomass combustion from industry nearby and agricultural practices within drainage basin of the Jiulong River, were remarkably contributed to the variations in δ 13 C values of MOMs in the offshore marine sediments.