期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved Hybrid Collaborative Fitering Algorithm Based on Spark Platform 被引量:1
1
作者 YOU Zhen HU Hongwen +2 位作者 WANG Yutao XUE Jinyun YI Xinwu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第5期451-460,共10页
An improved Hybrid Collaborative Filtering algorithm(H-CF)is proposed,addressing the issues of data sparsity,low recommendation accuracy,and poor scalability present in traditional collaborative filtering algorithms.T... An improved Hybrid Collaborative Filtering algorithm(H-CF)is proposed,addressing the issues of data sparsity,low recommendation accuracy,and poor scalability present in traditional collaborative filtering algorithms.The core of H-CF is a linear weighted hybrid algorithm based on the Latent Factor Model(LFM)and the Improved Item Clustering and Similarity Calculation Collaborative Filtering Algorithm(ITCSCF).To begin with,the items are clustered based on their attribute dimension,which accelerates the computation of the nearest neighbor set.Subsequently,H-CF enhances the formula for scoring similarity by penalizing popular items and optimizing unpopular items.This improvement enhances the rationality of scoring similarity and reduces the impact of data sparseness.Furthermore,a weighting function is employed to combine the various improved algorithms.The balance factor of the weighting function is dynamically adjusted to attain the optimal recommendation list.To address the real-time and scalability concerns,the algorithm leverages the Spark big data distributed cluster computing framework.Experiments were conducted using the public dataset Movie Lens,where the improved algorithm’s performance was compared against the algorithm before enhancement and the algorithm running on a single machine.The experimental results demonstrate that the improved algorithm outperforms in terms of data sparsity,recommendation personalization,accuracy,recall,and efficiency. 展开更多
关键词 recommendation algorithm collaborative filtering latent factor model score weighting item clustering SPARK similarity calculation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部